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ABSTRACT
Recently, the type of compound regularizers has become
a popular choice for signal reconstruction. The estimation
quality is generally sensitive to the values of multiple regu-
larization parameters. In this work, based on BDF algorithm,
we develop a data-driven optimization scheme based on
minimization of Stein’s unbiased risk estimate (SURE)—
statistically equivalent to mean squared error (MSE). We
propose a recursive evaluation of SURE to monitor the MSE
during BDF iteration; the optimal values of the multiple pa-
rameters are then identified by the minimum SURE. Monte-
Carlo simulation is applied to compute SURE for large-scale
data. We exemplify the proposed method with image de-
convolution. Numerical experiments show that the proposed
method leads to highly accurate estimates of regularization
parameters and nearly optimal restoration performance.

Index Terms— Stein’s unbiased risk estimate (SURE),
compound regularizers, regularization parameter, BDF algo-
rithm, signal deconvolution

1. INTRODUCTION

Consider the standard linear inverse problem: find a good
estimate of x0 ∈ R

N from the following observation model
[1, 2]:

y = Ax0 + ε (1)

where y ∈ RM is the observed noisy data, A ∈ RM×N is an ob-
servation matrix, ε ∈ RM is an additive Gaussian white noise
with known variance σ2 > 0.

Regularization has been a standard technique for solving
the inverse problem. Recently, people considered the regular-
izer as a linear combination of “simple” regularizers, i.e., the
objective function is [3–5]:

min
x

1
2

∥∥∥Ax−y
∥∥∥2

2 +λ1 ·J1(D1x) +λ2 ·J2(D2x)︸                                                 ︷︷                                                 ︸
L(x)

(2)

where both J1 and J2 are simple regularizers, λ1 and λ2 are
their respective regularization parameters.

This type of hybrid regularizers stems mainly from the
following observation: it may be desired to encourage the
solution to exhibit characteristics that are not easily en-
forced/described by a single regularizer. In this paper, we
choose BDF algorithm to solve (2) [6], since it provides a
basic scheme for tackling the multiple regularizers, and that
is easy to extend for other types of regularizer. The ‘BDF’
stands for the last names ‘Bioucas-Dias’ and ‘Figueiredo’ of
both authors of [6].

For a pleasant reconstruction quality, it is essential to se-
lect the proper values of multiple regularization parameters,
to keep a good balance between data fidelity and compound
regularizers. The choice of λ1 and λ2 is generally a difficult
problem. There are two well-known general approaches capa-
ble of selecting the parameters in non-linear inverse problems:
maximum likelihood and cross validation [7]. However, both
methods suffer from a problem of computational complexity.

In this paper, we quantify the reconstruction performance
by the mean squared error (MSE) [1, 8]:

MSE =
1
N
E
{∥∥∥̂x−x0

∥∥∥2
2

}
(3)

and attempt to select the values of λ1 and λ2, such that the cor-
responding solution x̂ achieves minimum MSE. Notice that
MSE (3) is inaccessible due to the unknown x0. In practice,
Stein’s unbiased risk estimate (SURE) has been proposed as a
statistical substitute for MSE (if A is full-rank matrix) [9,10]:

SURE =
1
N

(∥∥∥̂x
∥∥∥2

2 −2yTA(ATA)−1x̂ + 2σ2Tr
(
A(ATA)−1Jy (̂x)

)
+

∥∥∥x0
∥∥∥2

2

)
(4)

since it depends on the observed data y only1. Here, Jy (̂x)
∈ RN×N is a Jacobian matrix defined as [11]:[

Jy (̂x)
]
n,m

=
∂x̂n

∂ym

Recently, SURE has become a popular criterion for opti-
mization, in the context of non-linear denoising and decon-
volution [1, 8], and `1-based sparse reconstruction [11–13].

1The last term of (4)—‖x0‖
2
2—is constant irrelevant to the optimization

of x̂.
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However, there are very few literature on the application of
SURE to the compound regularizers.

This paper is to optimize the regularization parameters λ1
and λ2 for (2), based on minimization of SURE (4). Our main
contribution is to develop a recursive evaluation of SURE for
BDF algorithm, which finally provides a reliable estimate of
the MSE for the non-linear reconstruction. The optimal λ1
and λ2 can then be identified by exhaustive search for mini-
mum SURE. In addition, the Monte-Carlo method is applied
for practical computation of large-scale data.

2. AN APPLICATION OF BDF ALGORITHM TO
TV+`1 MINIMIZATION

2.1. Basic scheme of BDF algorithm

The problem (2) is equivalent to the following:

min
x

1
2

∥∥∥Ax−y
∥∥∥2

2 +λ1 ·J1(z1) +λ2 ·J2(z2)

subject to
∥∥∥z1 −D1x

∥∥∥2
2 = 0;

∥∥∥z2 −D2x
∥∥∥2

2 = 0

which, by Lagrangian, is equivalent to:

min
x

1
2

∥∥∥Ax−y
∥∥∥2

2 +λ1J1(z1) +λ2J2(z2) +
µ1

2

∥∥∥z1 −D1x
∥∥∥2

2 +
µ2

2

∥∥∥z2 −D2x
∥∥∥2

2

where µ1 and µ2 are the augmented Lagrangian penalty pa-
rameters.

To minimize this functional w.r.t. x, z1 and z2, BDF algo-
rithm is to alternatively minimize w.r.t. these variables:

x(i+1) = argminx
∥∥∥Ax−y

∥∥∥2
2 +

∑2
t=1 µt

∥∥∥Dtx− z(i)
t

∥∥∥2
2

z(i+1)
1 = argminz1

1
2

∥∥∥z1−D1x(i+1)
∥∥∥2

2 +
λ1
µ1
·J1(z1)

z(i+1)
2 = argminz2

1
2

∥∥∥z2−D2x(i+1)
∥∥∥2

2 +
λ2
µ2
·J2(z2)

which can be efficiently expressed and computed by Moreau’s
proximal operator for a number of typical regularizers of in-
terest [14, 15].

2.2. Exemplification with wavelet-`1 and TV regularizers

To exemplify the iterative algorithm, we consider signal
deconvolution problem, with both wavelet-`1 and TV regu-
larizers, i.e.,J1(D1x) = ‖D1x‖1 andJ2(x) = TV(x), where D1
denotes wavelet decomposition. Thus, the problem becomes:

min
x

1
2

∥∥∥Ax−y
∥∥∥2

2 +λ1
∥∥∥z1

∥∥∥
1 +λ2TV(z2)+

µ1

2

∥∥∥D1x−z1
∥∥∥2

2 +
µ2

2

∥∥∥x−z2
∥∥∥2

2

which yields the following iteration:
x(i) = B−1

(
ATy +µ1DT

1 z(i−1)
1 +µ2z(i−1)

2

)
z(i)

1 =Tλ1/µ1

(
D1x(i)

)
z(i)

2 = argminz2
1
2

∥∥∥z2 −x(i)
∥∥∥2

2 +
λ2
µ2
·TV(z2)

(5)

where B = ATA +µ1DT
1 D1 +µ2I, TT (·) denotes the pointwise

soft-thresholding with threshold T [11]. z(i)
2 can be efficiently

solved by Chambolle’s algorithm [16].

For 2-D case, we consider the TV definition as TV(x) =∑N
n=1

√
|(D(1)

2 x)n|2 + |(D(2)
2 x)n|2 +α, where D(1)

2 and D(2)
2 denote

the first-order differences along horizontal and vertical direc-
tions, α is a very small number (e.g. 10−12) [17]. Such an
approximation simplifies numerical computations due to the
differentiability of TV, and may help to avoid the staircasing
effect in some cases [17].

Chambolle’s algorithm for solving z(i)
2 of (5) can be ex-

pressed in matrix language as (iterate by j):

u(i, j+1) = V(i, j)
(
u(i, j) −

τµ2

λ2
D2

(
x(i) +

λ2

µ2
DT

2 u(i, j)
)

︸                 ︷︷                 ︸
z(i, j)

2

)
(6)

where τ is a step-size, D2 and diagonal matrix V
(i, j)

are

D2 =

D(1)
2

D(2)
2

 ∈ R2N×N ; V(i, j)
=

V(i, j) 0
0 V(i, j)

 ∈ R2N×2N

with diagonal V(i, j) ∈ RN×N given by:

V(i, j)
n,n =

(
1 +

τµ2

λ2

√(
(D(1)

2 z(i, j)
2 )n

)2
+

(
(D(2)

2 z(i, j)
2 )n

)2
+α

)−1

Finally, z(i)
2 is obtained by the convergence of Chambolle’s

iteration (6): z(i)
2 = z(i,∞)

2 at j =∞ when converged.

3. RECURSIVE EVALUATION OF SURE FOR BDF
ALGORITHM

3.1. Recursive evaluation of SURE

From (4), the SURE for the i-th iterate is2:

SURE =
1
N

(∥∥∥x(i)
∥∥∥2

2 −2yTA(ATA)−1x(i) + 2σ2Tr
(
A(ATA)−1Jy(x(i))

))
(7)

The computation of SURE requires to compute Jy(x(i)), which
can be evaluated in a recursive manner, as shown later.

From (5), by the basic property of Jacobian, we have: Jy
(
x(i)

)
= B−1

[
AT +µ1DT

1 Jy
(
z(i−1)

1

)
+µ2Jy

(
z(i−1)

2

)]
Jy

(
z(i)

1

)
= P(i)D1Jy

(
x(i)

) (8)

where P(i) is a diagonal matrix with diagonal element:

[
P(i)

]
n,n

=

 1, if
∣∣∣(D1x(i))n

∣∣∣ ≥ λ1/µ1

0, otherwise

The recursion of Jy
(
z(i)

2

)
has to be obtained by Chambolle’s

algorithm. We consider 2-D case only.

2In the remainder of this paper, the last constant term—‖x0‖
2
2—is ignored

for brevity.
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3.2. Recursion of Jy
(
z(i)

2

)
for Chambolle’s algorithm

For 2-D case, we express u(i, j+1) of (6) as u(i, j+1) =u(i, j+1)
1

u(i, j+1)
2

, where the first part u(i, j+1)
1 is:

u(i, j+1)
1 = V(i, j)

(
u(i, j)

1 −
τµ2

λ2
D(1)

2 z(i, j)
2︸                   ︷︷                   ︸

w(i, j)
1

)

After derivations, we obtain3:

Jy
(
u(i, j+1)

)
=

V(i, j) 0
0 V(i, j)

Jy
(
u(i, j)

)
−
τµ2

λ2
·W(i, j)

1 C(i, j)
1 + V(i, j) W(i, j)

1 C(i, j)
2

W(i, j)
2 C(i, j)

1 W(i, j)
2 C(i, j)

2 + V(i, j)

D2Jy
(
z(i, j)

2

)
(9)

where C(i, j)
1 and C(i, j)

2 are diagonal:

[
C(i, j)

1

]
n,n

=
am ·

(
V(i)

m,m

)2√
a2

m + b2
m +α

;
[
C(i, j)

2

]
n,n

=
bm ·

(
V(i)

m,m

)2√
a2

m + b2
m +α

with a = D(1)
2 z(i, j)

2 and b = D(2)
2 z(i, j)

2 . W(i, j)
1 and W(i, j)

2 are diag-
onal: [W(i, j)

1 ]n,n = [wi, j
1 ]n and [W(i, j)

2 ]n,n = [wi, j
2 ]n.

Note that z(i, j)
2 = x(i) +

λ2
µ2

DTu(i, j), we have:

Jy
(
z(i, j)

2

)
= Jy

(
x(i)

)
+
λ2

µ2
DTJy

(
u(i, j)

)
(10)

3.3. Summary of BDF algorithm with SURE evaluation

Finally, we summarize the proposed algorithm as Algo-
rithm 1, which enables us to solve (2) with a prescribed val-
ues of λ1 and λ2, and simultaneously evaluate the SURE dur-
ing the BDF iterations.

Algorithm 1: SURE evaluation for BDF algorithm

for i = 1,2, ... (BDF iteration) do
1 update x(i), z(i)

1 and z(i)
2 by (5) and (6);

2 update Jy(x(i)), Jy(z(i)
1 ) and Jy(z(i)

2 ) by (8), (9) and
(10);
3 compute SURE of i-th iterate by (7);

end

3.4. Monte-Carlo for practical computation

For 2-D case, due to the limited computational resources
(e.g. RAM), it is impractical to store and compute the huge
matrices A, D1 and Jacobians. Monte-Carlo (MC) simulation
provides an alternative way to compute the trace by the fol-
lowing fact [8]:

Tr
(
A(ATA)−1Jy(x(i))

)
= E

{
nT

0 A(ATA)−1Jy(x(i))n0
}

(11)

3The derivation of Jy
(
u(i, j)

)
based on vector calculus is very complicated,

we omit it here to save the page space.

with n0 ∼ N(0,IN). From (8), we have:


n(i)

x︷     ︸︸     ︷
Jy(x(i))n0 =

n1︷     ︸︸     ︷
B−1ATn0 +µ1B−1DT

1

n(i−1)
z1︷        ︸︸        ︷

Jy(z(i−1)
1 )n0 +µ2B−1

n(i−1)
z2︷        ︸︸        ︷

Jy(z(i−1)
2 )n0

Jy(z(i)
1 )n0︸     ︷︷     ︸

n(i)
z1

= P(i)D1 Jy(x(i))n0︸     ︷︷     ︸
n(i)

x

(12)
The n(i)

z2 can be obtained by Chambolle’s algorithm from n(i)
x :


n(i, j+1)

u1︷          ︸︸          ︷
Jy(u(i, j+1)

1 )n0 = V(i, j)

n(i, j)
u1︷       ︸︸       ︷

Jy(u(i, j)
1 )n0−

τµ2
λ2

Q(i, j)
1

n(i, j)
z2︷       ︸︸       ︷

Jy(z(i, j)
2 )n0

Jy(u(i, j+1)
2 )n0︸          ︷︷          ︸
n(i, j+1)

u2

= V(i, j) Jy(u(i, j)
2 )n0︸       ︷︷       ︸

n(i, j)
u2

−
τµ2
λ2

Q(i, j)
2 Jy(z(i, j)

2 )n0︸       ︷︷       ︸
n(i, j)

z2

(13)

and

Jy(z(i, j)
2 )n0︸       ︷︷       ︸

n(i, j)
z2

= Jy(x(i))n0︸     ︷︷     ︸
n(i)

x

+
λ2

µ2
(D(1)

2 )T Jy(u(i, j)
1 )n0︸       ︷︷       ︸

n(i, j)
u1

+
λ2

µ2
(D(2)

2 )T Jy(u(i, j)
2 )n0︸       ︷︷       ︸

n(i, j)
u2

(14)
where Q(i, j)

1 = (W(i, j)
1 C(i, j)

1 +V(i, j))D(1)
2 +W(i, j)

1 C(i, j)
2 D(2)

2 and Q(i, j)
2 =

W(i, j)
2 C(i, j)

1 D(1)
2 + (W(i, j)

2 C(i, j)
2 + V(i, j))D(2)

2 .
Thus, instead of using (8), (9) and (10), we can success-

fully compute the trace by (11)–(14), without the explicit stor-
age of huge matrices, summarized as follows. The flowchart
is shown in Fig.1.

Algorithm 2: MC for SURE of BDF algorithm (2-D)

for i = 1,2, ... (BDF iteration) do
1 update x(i), z(i)

1 and z(i)
2 by (5) and (6);

2 update n(i)
x , n(i)

z1 and n(i)
z2 by (12), (13) and (14);

3 compute the trace by (11);
4 compute SURE of i-th iterate by (7);

end

input

known y and A
initial z(0)

1 , z(0)
2

update x(i) and
z(i)

1 by (5)

update n(i)
x and

n(i)
z1 by (12)

compute z(i)
2by (6)

compute n(i)
z2

by (13-14)

Chambolle’s algorithm

compute SURE
by (11) and (7)

output

opt. λopt

and x̂opt

BDF iteration by i := i + 1

BDF algorithm

Fig. 1. SURE-MC evaluation for BDF algorithm (Cham-
bolle’s algorithm is for z(i)

2 ).

To find the optimal values of λ1 and λ2, an intuitive idea
is to repeatedly implement Alg. 1 for various tentative values
of λ1 and λ2, then, the minimum SURE indicates the optimal
values (see Fig.4 for example). This global search has been
frequently used in [11–13].
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4. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we exemplify the proposed algorithm with
image deconvolution, by considering a test image Camerman,
blurred by a Gaussian kernel. The noise level corresponds to
blur-SNR4 of 30dB. For image processing, we have to use
MC to compute SURE as Alg. 2 and Fig.1, due to the large
sizes of A, D1 and Jacobians.

First, we solve (2) with fixed values of λ1 and λ2. Fig.2
shows the BDF convergence and the evolution of SURE. We
can see that the SURE is always a reliable substitute for MSE
during the iterations.

(1) fixed λ1 = λ2 = 0.01 (2) fixed λ1 = λ2 = 1.00

2 0 4 0 6 0 8 0 1 0 01 x 1 0 5

2 x 1 0 5

3 x 1 0 5

 

 o b j e c t i v e  v a l u e

i t e r a t i o n  n u m b e r

2 0 0

2 4 0

2 8 0 M S E
 S U R E

5 1 0 1 5 2 0 2 5
2 x 1 0 6

2 x 1 0 6

2 x 1 0 6

2 x 1 0 6

2 x 1 0 6

 

 o b j e c t i v e  v a l u e

i t e r a t i o n  n u m b e r

2 7 0

2 8 0

2 9 0

3 0 0

3 1 0

 M S E
 S U R E

Fig. 2. The convergence of BDF algorithm with fixed values of λ1
and λ2.

We repeatedly implement Alg. 2 to perform global opti-
mization of λ1 or λ2, with fixed another, and show the results
in Fig.3. Fig.4 shows the global optimization of λ1 and λ2,
within the interval of [10−3,100]. The optimal values of λ1
and λ2 obtained by minimizing SURE are very close to the
oracle results of minimum MSE.

(1) with fixed λ2 = 10−2 (2) with fixed λ1 = 10−2

1 E - 3 0 . 0 1 0 . 1

2 0 0

2 2 0

2 4 0

2 6 0

r e g u l a r i z a t i o n  p a r a m e t e r  �
1

 M S E
 S U R E

1 E - 3 0 . 0 1 0 . 1 1
1 8 0

2 0 0

2 2 0

2 4 0

2 6 0

r e g u l a r i z a t i o n  p a r a m e t e r  �
2

 M S E
 S U R E

opt. λ = 1.08×10−2 opt. λ = 4.52×10−2

Fig. 3. The global optimization of λ1 or λ2, when fixing another.

4Blur signal-to-noise ratio (BSNR) is defined as:

10log10

( ‖Ax0−mean(Ax0)‖22
Mσ2

)
in dB.

optimal λ1 = 2.71×10−3

λ2 = 1.93×10−2

Fig. 4. The global optimization of λ1 and λ2.

Fig.5 shows a visual comparison between SURE and MSE
minimization. We can see that the SURE minimization yields
the PSNR loss within 0.2dB, compared to the oracle optimal
performance.

observed image SURE optimized MSE optimized
PSNR=22.42dB PSNR=25.30dB PSNR=25.47dB

Fig. 5. A visual example of Cameraman.

5. CONCLUSIONS

In this paper, we presented a SURE-based automatic
method of tuning multiple regularization parameters for
(TV+`1) compound regularizers, based on BDF algorithm
[6]. Future work will deal with extension of this technique to
handle other hybrid regularizers and the development of fast
optimization algorithm instead of the time-consuming global
search (shown as Fig.4).
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