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a b s t r a c t

In many real applications such as remote sensing and space surveillance, traditional method based on
ideal imaging has already been well-established. It is widely applied to analyze point-target detection
performance of electro-optical imaging system, including signal-to-noise ratio (SNR) and noise equiva-
lent temperature difference (NETD). However, this method cannot accurately predict these performance
parameters, as it fails to take into account the influence of optical blurring caused by atmospheric turbu-
lence, optics diffraction, optical aberrations, etc. In this sense, the methods, if proposed to thoroughly
incorporate degrading factors into object acquisition model, would succeed to describe point-target
detection performance to more degree of accuracy. The main focus of this article is to quantitatively ana-
lyze the influence of optical blurs upon point-target detection, and to establish close relationship
between optical blurring and metrics of point-target acquisition. This point can be interpreted and
achieved mathematically: the mathematical analysis based on image acquisition model is to combine
Aperiodic Transfer Function (ATF) and Target Size Function (TSF) with analysis of SNR and NETD. In addi-
tion, the concept of NETD, traditionally used to describe extended object detection, is generalized and
equivalently applied to analyze point-target detection. This refined method can be directly and conve-
niently used for faithfully predicting detection performance, and provides a more reliable benchmark
for improving measurement setup, if we properly estimate the degree of image distortion.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The basic function of electro-optical imaging system is optical
collection, electro-optical conversion, electronic processing and
multiplexing, image reconstruction, and display of object plane im-
age information created by illumination or reflection of object [1–
4]. The major functions are always associated with typical config-
uration of system. Equivalently, the actual configuration and
implementation of system strongly depends on the top-level
requirements and resulting flow-down system specifications [1–
3,5–8]. When the system is designed for object detection, analysis
of object detection performance is strongly recommended before
fulfilling this task. The analysis could predict system operating per-
formance, and provide a reliable benchmark for improving system
design and choosing application environments [5–8,14–15]. The
more accurate the prediction of object detection performance is;
the more reliable implementation the system will have [2,3,6–8].
So it is necessary to analyze object detection performance in ad-
vance, if a system is designed to detect object in some specific
situations.

Analysis of object detection performance has been developed
for several decades [1–4,6], and is still a valid challenge for perfor-
mance evaluation of electro-optical imaging system [1,2,9–10].
Now technologies of object detection, to most extent, rely on object
acquisition model. In other words, in order to detect object that is
of interest, it is often to use detector to collect flux emanating from
objects and transmitting optical system, and to traditionally con-
sider its output voltage as system response [1–3]. In spite of a large
amount of literature that dedicated to object detection [1–3,9–13],
it still has not been studied thoroughly due to the fact that most
people consider object detection under the assumption of ideal
imaging [1–3,10]. People often simply assume ideal imaging case,
where the effects of any image-degradation factors during the ob-
ject acquisition process are ignored [1–3,10]. In practice, when the
projected area of object is much larger than that of detector, the
detector is flood-illuminated so that system response is not influ-
enced by optical blurring [1,2]. However, unlike extended object
detection described above, when image size of observed object is
somewhat smaller or comparable to detector size, the object can-
not be resolved by system. In this case, optical blurring limits im-
age size of object, and changes light-intensity distribution in the
scope of the detector [1,2,9], shown as Fig. 1. Though Fig. 1 on
sub-pixel scale cannot be displayed on screen, the distribution
change will contribute to the output voltage of this pixel. As optical
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blurring reduces system response voltage, it inevitably degrades
object detection performance to more or less extent, such as sig-
nal-to-noise ratio (SNR) and noise equivalent temperature differ-
ence (NETD).

In many real applications, such as remote sensing and space
surveillance, observed object is at a remote distance from the
imaging system. Its image size is much smaller than detector size.
This limiting case is of much interest, where the system is viewing
point-target [1–3,9,11–13]. In point-target detection, optical blur-
ring must be taken into account, especially when system is oper-
ated in infrared band where optics diffraction causes more
distortion to point-target image [1,2,9]. Mathematically, blurring
degree is measured by optical response index, which is the only
parameter of Gaussian Point Spread Function (PSF) [9], while its ef-
fect upon system response can be represented by Aperiodic Trans-
fer Function (ATF) and Target Size Function (TSF) [1,2]. On the
other hand, traditional method used to predict point-target detec-
tion performance, simply assuming ideal imaging condition with-
out any image distortions [1–4,6–8]. Cooke and Lomheim
evaluated point-target detection for remote sensor, using tradi-
tional method [3,4]. Though this method has been well-established
and broadly applied in many occasions, it fails to accurately predict
point-target detection performance. Therefore, in order to achieve
more degree of accuracy, it would be necessary to reconsider
point-target detection performance and to refine traditional meth-
od, by incorporating optical blurring into this problem. This is also
a key point that to be addressed in this paper.

Historically, optical blurring and its related problems have been
studied for several decades, and achieved significant success [16–
24]. For instance, image acquisition model was proposed to deal
with optical blurring [16–18]; nanoparticles can be localized to
sub-resolution by exploiting PSF and maximum-likelihood estima-
tion [19]; point-object detection and sub-pixel position estimation
algorithm including PSF’s effect was developed [20]; various
deconvolution algorithms were developed to remove optical blurs
[21–23]. However, there are only a few works concerning the rela-
tionship between optical blurring and point-target detection
[1,2,9,24]. In Refs. [1,2], Holst used to superficially discuss this
problem and advance the conceptions of ATF and TSF. Focusing
on the transition course from ideal point-target to extended object,
he explained the non-linear correlation between image size of ob-
ject and system response. However, he did not interpret this point
mathematically, and combine all factors into a unified framework.
As a result, he pointed out that system signal of point-target detec-
tion can only be calculated case-by-case. Additionally, he did not
relate optical blurring to detection performance. In [9], Poropat
analyzed small-object range performance under PSF’s influence,
but he did not derive widely applicable formulas to describe it
and establish a framework. In [24], the authors noticed the fact
that optical obscuration would result in lost of received power by

detector, when the object power center is located off-center in a
detector. However, they constrained their discussions only in dif-
fraction-limited optical system, and did not noticed that due to
power spread, detector captures power less than expected in ideal
imaging, even when power center is positioned at detector’s cen-
ter. So their result cannot be directly applied to analyze point-tar-
get detection in real situations, where optical diffraction is not the
only blurring factor, and point-target imaging position cannot be
controlled and predicted on sub-pixel scale.

To address this problem, as regards infrared point-target detec-
tion, this paper analyzes detection performance in a different way
from traditional method, mainly focusing on quantitative analysis
of the effect of blurring factors upon system response, and combi-
nation of blurring degree with detection performance. To be spe-
cific, using image acquisition model proposed by Huck [14–18],
PSF is combined with system response, and thus, optical response
index becomes a key parameter of ATF and TSF [1,2], finally, ATF
and TSF are used to describe SNR and NETD. In this way, we propose
a whole system of mathematical expressions that can be widely
used to predict detection performance, and make us free from
case-by-case calculation. Armed with proposed method, one can
quantitatively analyze point-target detection performance under
the influence of optical blurring, taking advantage of ATF and TSF.

To clearly discuss this problem, some important conceptions
must be defined and clarified here. Concerning relative size of ob-
ject size to detector, we discuss detection performance in two cat-
egories: transition process and limiting case. Transition process
refers to the changing course from point-target to extended object,
i.e. image size of object is comparable to detector size. The limiting
case is point-target detection. Image size of point-target is much
smaller than detector size, so it is also the limit condition of tran-
sition process, when image size of object approaches zero [1,2].
Traditional method refers to object detection analysis under the
assumption of ideal imaging without any image degradations, i.e.
PSF is not ignored or simply assumed to be Delta function [3,4].
Our proposed method in this paper analyzes the problem under ac-
tual imaging situation, with consideration of PSF. Observed sce-
nario consists of object and background: object is the part of
interest and to be detected, and background is another part we
are not concerned with. Because image size of object is smaller
than one detector, target pixel is defined as the detector capturing
object radiation, and its output voltage is conventionally treated as
system response [1–4]. Other pixels in the array receive only back-
ground information, so they are called background pixel for sim-
plicity. Signal is usually defined as the output voltage difference
between target pixel and background pixel [1–4]. Additionally, un-
like Ref. [24], we assume image center of object is fixed at the
detector center, and mainly focus on transition process.

This paper is organized as follows: in Section 2, under the
assumption that PSF is of Gaussian function form, mathematical
expressions of both ATF and TSF is derived, based on image acqui-
sition model; in Section 3 and Section 4, incorporating ATF and TSF
into formulism of system response, the more accurate prediction of
detection performance (SNR and NETD) can be achieved in a simple
way. Moreover, by comparing proposed method with traditional
one, it can be easily seen that the effect of optical blurring cannot
be neglected in both transition course and limiting case.

2. Formulations of ATF and TSF

2.1. Establishment of system response

To discuss the effect of optical blurring upon system response,
the first step would be to derive expressions of system response,
using image acquisition model [16–18].

Fig. 1. Comparison between ideal and actual imaging in target pixel.
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PSF is often used to describe optical blurring and measure the
degree of power spread. In practice, as typical system is concerned
[1–4], PSF is usually modeled as Gaussian function [9]:

hopticsðx; yÞ ¼ pn2 � exp½�ðpnÞ2 � ðx2 þ y2Þ� ð1Þ

where n called optical response index, represents the degree of opti-
cal blurring. This key parameter can be adjusted so as to make PSF
model suitable for specific environment. Refs. [1,9] proposed meth-
ods how to estimate optical response index, considering all the
blurring factors. In infrared object detection, typical value of n is
2.0–4.5 � 104 m�1 [1–4,9]. pn2 is normalization coefficient of optics
PSF.

Pixel is regarded as spot aperture, if it is of rectangular shape,
hpixel(x, y) can be written as [16–18]:

hpixelðx; yÞ ¼ rect
x
Dx
;

y
Dy

� �
¼

1 jxj � Dx
2 ; jyj � Dy

2

0 jxj > Dx
2 ; jyj > Dy

2

(
ð2Þ

where rect-function denotes rectangular function; Dx and Dy de-
note pixel size along x- and y-directions. This spot aperture essen-
tially represents integration process of detector: detector collects
infrared radiation and integrates irradiance over the whole detector
region to radiation power.

We can take, for example, a simple input scene f(x, y) on focal
plane array (FPA), which contains high-frequency features:

f ðx; yÞ ¼ A0

p � fl2 MB � rect
x
Bx
;

y
By

� �
þ A0

p � fl2 ðMT �MBÞ

� rect
x
Tx
;

y
Ty

� �
ð3Þ

where f(x, y) represents the projected version of our observed sce-
nario that consists of object and background. This expression de-
scribes an original scene where point-target of MT infrared
irradiance is located in a wide background of uniform infrared irra-
diance MB; Bx, By and Tx, Ty denote image size of background and ob-
ject, respectively; Bx, By� Dx, Dy; A0 stands for entrance aperture
area of system; fl is focal length.

Image acquisition model in [16–18] can be written as:

gðm;nÞ ¼ K � ½f ðx� ux; y� uyÞ � hopticsðx; yÞ � hpixelðx; yÞ�

� d x
Dx
�m;

y
Dy
� n

� �
ð4Þ

where g(m, n) stands for system output voltage sequences, acquired
by detector array of imaging system, each value of g corresponds to
each detector’s output voltage [16–18]; (m, n) is pixel index in x-
and y-directions; d(x, y) symbolizes sampling process; K is conver-
sion ratio from radiation power to voltage [1,2]; (ux, uy) is sub-pixel
image position of object, so-called sub-pixel shifts or phasing [1,17].
As mentioned in Section 1, we simply assume object is projected to
target pixel’s center, i.e. assume (ux, uy) to be (0, 0). The output volt-
age of target pixel is g(0, 0), which is also system response. Thus,
combining Eqs. (1)–(4) and applying properties of self-defined
ierf-function (see Appendix A), we obtain system response is:

gðTx; TyÞ ¼ K
A0

p � fl2 MBAd þ K
A0

p � fl2 ðMT �MBÞAd

� ierf pn
Tx

2
;pn

Dx

2

� �
� ierf pn

Ty

2
;pn

Dy

2

� �
ð5Þ

where Ad is detector area: Ad = DxDy

Without consideration of optical blurring, [1–4] suggested sys-
tem response in traditional method can be written as:

gidealðTx; TyÞ ¼
K A0

p�fl2
MBAd þ K A0

p�fl2
ðMT �MBÞAT AT � Ad

K A0

p�fl2
MT Ad AT > Ad

8<
: ð6Þ

where AT is ideal imaging area of point-target: AT = TxTy.
Considering Eq. (6), when observed object is extended one, and

can be resolved by imaging system, detector is flood-illuminated
by object. In this case, system response g does not infer anything
about extended object other than its irradiance. Equivalently, sys-
tem response g is independent of image size of extended object AT

[1,2], it depends on only detector size Ad, because basic output unit
of imaging system is detector but not observed object. However, in
transition process, target pixel in not full of object radiation, so im-
age size of object contributes to system response. Thus, a simple
linear relationship between AT and system response g holds for
ideal imaging [3,4]. Comparing Eq. (5) with Eq. (6), it can be found
that in Eq. (5), optical blurring, denoted by n, has been successfully
incorporated into system response g. In other words, Eq. (5) makes
a quantitative connection between optical blurring and system
response.

2.2. Detection signal analysis

Now we are at the position to obtain signal expression under
PSF’s influence, since both definitions of ATF and TSF are raised
from signal analysis. Because what is of interest is the differential
output of system [1,2], signal, as traditionally defined [1–4], should
be output voltage difference between target pixel and background
pixel, and can be written as:

sðTx; TyÞ ¼ gðTx; TyÞ � gb ð7Þ

where gb is output voltage of background pixel:

gb ¼ K
A0

p � fl2 MBAd ð8Þ

Therefore, combining (5)–(8), we have:

sðTx; TyÞ ¼ K
A0

p � fl2 ðMT �MBÞAd � ierf pn
Tx

2
;pn

Dx

2

� �

� ierf pn
Ty

2
;pn

Dy

2

� �
ð9Þ

sidealðTx; TyÞ ¼
K A0

p�fl2
ðMT �MBÞAT AT � Ad

K A0

p�fl2
ðMT �MBÞAd AT > Ad

8<
: ð10Þ

Signal s shares the same explanation with system response g,
and is also a pixel-based measured.

2.3. Analysis of ATF

From Eqs. (9) and (10), in transition course, maximum value of
signal s is achieved, when extended object is observed, no matter
what its image size exactly is. In this case, as illustrated by Eq.
(10), maximum signal is independent of image size of object, and
is determined only by detector size:

max½sðTx; TyÞ� ¼ K
A0

p � fl2 ðMT �MBÞAd ð11Þ

Aperiodic Transfer Function (ATF) is essentially normalized
form of signal s: it transforms the maximum value of signal to
unity [1]. So we have:

ATFðTx; TyÞ ¼
sðTx; TyÞ

max½sðTx; TyÞ�
¼ ierf pn

Tx

2
;pn

Dx

2

� �
� ierf pn

Ty

2
;pn

Dy

2

� �
ð12Þ

ATFidealðTx; TyÞ ¼
sidealðTx; TyÞ

max½sðTx; TyÞ�
¼

AT=Ad AT � Ad

1 AT > Ad

�
ð13Þ
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ATF is mainly used for quantitatively describing the transition pro-
cess, especially when taking into account optical blurring. This
function brings great benefit to people who want to accurately pre-
dict object detection performance: once image size of object is
known, signal can be calculated as multiplication of ATF by its max-
imum value, using Eqs. (11) and (12). Assuming pixel size Ad is
30 lm � 30 lm, Fig. 2 shows that the relationship between ATF
and AT under three situations: ideal imaging and two different de-
grees of optical blurring. Obviously, the more degree the optical
blurring has, the smaller value ATF is. As ATF is also pixel-based
measured, once object is resolved by system, ATF is independent
of AT. So ATF approaches 1 when AT is increasing.

Conceptually, the great significance of ATF is that it finely de-
scribes the subtle relationship on sub-pixel scale, which cannot
be displayed on screen. From another viewpoint, ATF is concerned
with frequencies higher than cutoff frequency of system, so it can-
not be shown in frequency domain. That is also the reason why this
function is named as ‘‘Aperiodic”.

As mentioned in Section 1, in practice, many real applications
correspond to the limiting case, where imaging system is viewing
ideal point-targets [3,4]. In this case that is of interest, optical blur-
ring dominates image size of point-target and the scope of its radi-
ation spread, which becomes independent of AT. However, ATF fails
to be used for calculating signal in the limiting case, because ATF
approaches to zero. In order to quantitatively represent this limit-
ing case, Target Size Function (TSF) would be helpful to come over
this obstacle.

2.4. Analysis of TSF

TSF is defined as the ratio between actual ATF and ideal ATF, so
we have:

TSFðTx; TyÞ ¼
ATFðTx; TyÞ

ATFidealðTx; TyÞ
ð14Þ

TSF can be used to quantify the difference of ideal with actual
situation and evaluate the magnitude of optical blurring effect
upon signal. The more value TSF has, the less difference between
ideal and actual imaging would be, the less degree of optical blur-
ring upon signal is. For instance, TSF = 1 means optical blurring
does not affect object detection at all. From Eqs. (12)–(14), we have

TSFðTx; TyÞ ¼
Ad
AT
� ierf pn Tx

2 ;pn Dx
2

� �
� ierf pn Ty

2 ;pn Dy

2

� �
AT � Ad

ierf pn Tx
2 ;pn Dx

2

� �
� ierf pn Ty

2 ;pn Dy

2

� �
AT > Ad

8><
>:

ð15Þ

Fig. 3 shows the correlation between TSF and AT. It illustrates
two points: (1) during the transition process, TSF is minimized
when AT and Ad are identical. It means optical blurring causes most
significant effect on object detection at this point and (2) the more
extent of optical blurring reduces TSF.

Signal can also be written using TSF:

sðTx; TyÞ ¼ TSFðTx; TyÞ � K
A0

p � fl2 ðMT �MBÞAT ð16Þ

The important benefit of TSF lies in Eq. (16), which enables us to
calculate signal in limiting case of ideal point-target. As AT ap-
proaches to zero, TSF has its limit:

lim
Tx ;Ty!0

TSFðTx; TyÞ ¼ erf pn
Dx

2

� �
� erf pn

Dy

2

� �
ð17Þ

Eq. (17) shows that in point-target detection, TSF approaches a
constant that is independent of AT. TSF depends only on the degree
of optical blurring n and detector size Ad. This equation demon-
strates that it is entirely possible to derive a widely applicable for-
mula of TSF not as Holst stated in [1] that TSF can only be
calculated on a case-by-case basis in point-target detection. For
example, assuming Ad is 30 lm � 30 lm, and n to be
4.5 � 104 m�1 and 3.0 � 104 m�1, we can easily obtain TSF is 0.98
and 0.91, respectively.

Thus, we have established a framework, including Eqs. (11)–
(17), for dealing with a wide range of various situations in object
detection. As mentioned in Section 1, our discussion is constrained
by the precondition that point-target is projected at detector cen-
ter. Eq. (17) refers to this case, where TSF is maximized [1]. If
detector size becomes relatively smaller for the sake of spatial res-
olution, or more blurring factors need to be considered, maximum
value of TSF would still probably be smaller than one. It has been
proved by the above example. Surely, if point-target image is not
located at the center of target pixel, i.e. when sub-pixel shift (ux, uy)
is not (0, 0), TSF would dramatically decrease as following:

Fig. 2. Relationship between ATF and image size of object. Fig. 3. TSF in transition process.
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lim
Tx ;Ty!0

TSFðux; uyÞ ¼
1
2

erf pn ux þ
Dx

2

� �	 

� erf pn ux �

Dx

2

� �	 
� �

� 1
2

erf pn uy þ
Dy

2

� �	 

� erf pn uy �

Dy

2

� �	 
� �
ð18Þ

Eq. (18) can be obtained by replicating the derivation through-
out Section 2. When point-target is exactly located between detec-
tors, TSF reaches its minimum:

min
ux ;uy

lim
Tx ;Ty!0

TSFðux;uyÞ ¼
1
2

erfðpnDxÞ �
1
2

erfðpnDyÞ ð19Þ

Considering typical setup parameters, its minimum approxi-
mately equals to 1/4.

Now, returning to the constrained discussion, from Eqs. (16)
and (17), signal of detecting point-target is:

sðTx; TyÞ ¼ erf pn
Dx

2

� �
� erf pn

Dy

2

� �
� K A0

p � fl2 ðMT �MBÞAT ð20Þ

Thus, we can calculate signal in the limiting case, using Eq. (20).
In this case, under PSF’s influence, signal is positive proportional to
AT. Surprisingly, it coincides with ideal imaging situation, just with
different proportional coefficients caused by optical blurring. This
expression can be widely used in many real applications that sat-
isfy limit condition. In addition, as this simple equality contains
no any complicated or self-defined functions, it would be of much
significance and convenience for predicting point-target detection
performance in actual engineering.

3. Analysis of SNR

3.1. Formulation of SNR based on ATF and TSF

As electro-optical imaging system is concerned, SNR refers to
pixel-based measure [1,2], and is traditionally defined as ratio of
signal voltage to noise voltage. This definition also corresponds
to Section 2.2 [1–8,11].

Usually, system noise is divided into three types: photon noise
introduced by object and background radiation, detector noise and
electronics noise. In practice, there is no apparent difference of sys-
tem noise between ideal and actual situations. In this paper, we
simply assume that optical blurring does not affect voltage level
of system noise [1,2,10–11]. Here, we denote noise voltage as VN.
According to the definition, SNR is:

SNRðTx; TyÞ ¼
sðTx; TyÞ

VN
ð21Þ

From Eqs. (9), (10), and (21), SNR can be expressed as:

SNRðTx; TyÞ ¼
K A0

p�fl2
ðMT �MBÞAd

VN
� ierf pn

Tx

2
;pn

Dx

2

� �

� ierf pn
Ty

2
;pn

Dy

2

� �
ð22Þ

SNRidealðTx; TyÞ ¼
K A0

p�fl2
ðMT �MBÞAT

VN
ð23Þ

Alternatively, SNR can be written in terms of ATF and TSF:

SNRðTx; TyÞ ¼
K A0

p�fl2
ðMT �MBÞAd

VN
� ATFðTx; TyÞ ð24Þ

SNRðTx; TyÞ ¼ SNRidealðTx; TyÞ � TSFðTx; TyÞ ð25Þ

Thus, Eqs. (24) and (25) incorporate ATF and TSF into SNR analysis.
Once optical response index n is estimated, ATF and TSF enable us to

easily predict SNR performance in the transition process. Moreover,
in the limiting case of point-target detection, SNR should be:

SNR ¼ erf pn
Dx

2

� �
� erf pn

Dy

2

� �
�
K A0

p�fl2
ðMT �MBÞ

VN
� AT ð26Þ

and

SNR ¼ erf pn
Dx

2

� �
� erf pn

Dy

2

� �
� SNRideal ð27Þ

Obviously, it is similar with signal analysis: in point-target
detection, optical blurring does not break the linear relationship
between SNR and AT, just reduces its proportional coefficient.

3.2. Simulation and result

In order to show the effect of optical blurring upon SNR, we can
take an example of infrared object detection: assuming that the ob-
served scenario is described as Eq. (3) and Fig. 1; in this scenario,
the temperatures of object and background are 320 K and 300 K,
respectively; system typical parameters: diameter of entrance stop
D0 is 0.05 m, focal length fl is 0.1 m, transmittance of optical sys-
tem is 0.8, pixel size Ad is 30 lm � 30 lm, responsivity R is
3 � 104 V/W, system gain G is 2 � 104, so conversion coefficient K
is 6 � 108 V/W, system noise voltage VN is 1 mV; under detection
wavelength of 3–5 lm, n can be set as 4.5 � 104 m�1 or
3.0 � 104 m�1 to meet different environments [1,9]. We set image
size of object AT as variable. Fig. 4 shows the relationship between
SNR and AT during the transition process.

Fig. 4 illustrates that optical blurring breaks the linear relation-
ship between SNR and AT in the transition course. Moreover, SNR
performance is measured on detector-basis: when observed object
is extended, signal becomes independent of AT. Therefore, SNR fol-
lows the same varying condition as signal and ATF: they become
constants when extended object is detected, if other parameters
are fixed.

In point-target detection, image size of object AT is much smal-
ler than detector size Ad. For simplicity, we assume AT varying from
0 to one hundredth of Ad. It corresponds to this limiting case,
shown in Fig. 5. Fig. 5 demonstrates SNR is always positive propor-
tional to point-target imaging size, no matter whether optical blur-
ring is considered or not. It coincides with transition course in ideal
imaging shown in Fig. 4. However, optical blurring lowers the pro-

Fig. 4. SNR in transition course of image size of object.

170 F. Xue, A.G. Yagola / Infrared Physics & Technology 52 (2009) 166–173



Author's personal copy

portional coefficient: the more degree optical blurring has, the
smaller value the coefficient is.

4. Analysis of NETD

4.1. Different concepts of DT in transition process

Traditionally, conception of NETD can only be applied to ana-
lyze extended object detection. Actually, it can also be used in
describing transition process, if the notion of temperature differ-
ence DT is carefully specified and defined.

The first type of DT is apparent DT [1], which simply defines
temperature difference of object with background, i.e.

DTa ¼ TT � TB ð28Þ

The second type of DT is area-weighted DT, defined as average
temperature difference of target pixel and background pixel: the
former contains both point-target and background radiation, while
the latter contains only background radiation [1]. Area-weighted
DT is based on average temperature difference within the scope
of pixel, and depends on relative size of AT–Ad. Like definitions of
signal and SNR, area-weighted DT is also measured on detector-ba-
sis. Under ideal imaging situation, area-weighted DT can be writ-
ten as:

DTp ¼
AdTB þ ATðTT � TBÞ

Ad
� TB ¼

ATðTT � TBÞ
Ad

¼ AT

Ad
� DTa ð29Þ

Obviously, area-weighted DT can be used more conveniently
than apparent DT to describe transition process, since it is quanti-
fied pixel-by-pixel and obeys system working mechanism. So, can
we address NETD problem in the same way to make NETD also
applicable to transition process and point-target detection? The
answer is positive: to describe point-target detection, we divide
NETD into two types: apparent NETD and area-weighted NETD,
which will be discussed as following.

4.2. Area-weighted NETD

Similarly, area-weighted NETD, denoted as NETDp, is average
temperature difference of target pixel and background pixel, which
causes noise equivalent voltage of signal. We have:

VN ¼ K
A0

p � fl2 ½MðTB þ NETDpÞ �MðTBÞ� � Ad ð30Þ

NETDp analysis has no difference with conventional method in
extended object detection. NETDp is often a tiny physical quantity,
so Taylor expansion can be used to turn Eq. (30) into the following
equation:

NETDp ¼
VN

K A0

p�fl2
� @MðTBÞ

@T � Ad

ð31Þ

Because area-weighted NETD is a pixel-based concept, it is not
concerned with any optical blurring factors on sub-pixel scale. So,
optical blurring does not affect area-weighted NETD as well. Due to
its permanently valid for object detection, this equation can also be
used to predict approximated value of apparent NETD, which will
be discussed as follows.

4.3. Apparent NETD

To intuitively represent temperature difference between object
and background in transition process, we propose apparent NETD,
defined as temperature difference, which causes noise equivalent
voltage of signal. Thus, we have:

VN ¼ K
A0

p � fl2 ½MðTB þ NETDaÞ �MðTBÞ� � Ad � ATFðTx; TyÞ ð32Þ

Under ideal imaging situation, we have the similar equation:

VN ¼ K
A0

p � fl2 ½MðTB þ NETDideal�aÞ �MðTBÞ� � Ad

� ATFidealðTx; TyÞ ð33Þ

Similarly, Eqs. (32) and (33) turns out to be:

NETDa ¼
VN

K A0

p�fl2
� @MðTBÞ

@T � Ad � ATFðTx; TyÞ
ð34Þ

NETDideal�a ¼
VN

K A0

p�fl2
� @MðTBÞ

@T � Ad � ATFidealðTx; TyÞ
ð35Þ

Thus, we can establish relationship for two types of NETD in
transition process:

NETDpðTx; TyÞ ¼ NETDa � ATFðTx; TyÞ ð36Þ

To find solution to Eqs. (32) and (33), it is equivalent to solve Eq.
(36). Eq. (36) provides an alternative way to calculate apparent
NETD except for Eq. (34): firstly, using Eq. (31) to calculate area-
weighted NETD, and then, using Eq. (36) to predict apparent NETD.
Combination of Eqs. (31) and (36) would be a simple prediction of
apparent NETD, though it is just an approximated value. Moreover,
as area-weighted NETD is independent to AT, Eq. (36) demonstrates
that apparent NETD is inverse proportional to ATF.

Furthermore, when system is viewing an ideal point-target, ATF
approaches zero. In this limiting case, Eq. (36) relying on ATF can-
not be used to calculate apparent NETD. We rewrite it using TSF
like this:

NETDpðTx; TyÞ ¼ NETDa �
AT

Ad
� TSFðTx; TyÞ ð37Þ

Combining Eqs. (17) and (37), we have:

NETDpðTx; TyÞ ¼ NETDa �
AT

Ad
� erf pn

Dx

2

� �
� erf pn

Dy

2

� �
ð38Þ

Unlike transition process illustrated by Eqs. (36) and (38) shows
that in point-target detection, apparent NETD is inverse propor-
tional to AT, not to ATF. Therefore, this limiting case is easier to ana-
lyze than transition process.

Fig. 5. SNR performance in point-target detection.
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4.4. Simulation and result

Recalling the example discussed in Section 3.2, from Eq. (31),
we obtain area-weighted NETD is 138.7 mK, which is independent
of AT. Thus, we can easily calculate apparent NETD using Eq. (36).
The results of transition process are shown in Fig. 6.

Fig. 6 illustrates the following three points: (1) when area-
weighted NETD is fixed, apparent NETD becomes smaller when im-
age size of object increases. And when image size of object AT is
comparable to detector size Ad, apparent NETD approaches a con-
stant, area-weighted NETD; (2) optical blurring degrades NETD
performance, and lower temperature sensitivity of system: under
PSF’s influence, system cannot response minor temperature fluctu-
ations, which may be detected by the same system under ideal sit-
uation; and (3) different degrees of optical blurring causes
different NETD performance: the larger value optical response in-
dex is, the worse NETD performance becomes.

Fig. 7 shows NETD performance in point-target detection calcu-
lated by Eq. (38). Since image size of point-target AT is much smal-

ler than detector size, apparent NETD has to be very large so that
average temperature of target pixel is higher than that of back-
ground pixel by small value of area-weighted NETD. Eq. (29) also
illustrates this point.

5. Conclusions

This paper mainly aims at establishing mathematical connec-
tion between optical blurring and object detection performance,
and enables us to more accurately analyze and predict perfor-
mance in a wide range of real applications. Armed with the pro-
posed framework, we need not to calculate detection
performance case-by-case. Firstly we analyzed the transition
course from point-target to extended object, using ATF and TSF,
and then, to predict point-target detection by calculating limiting
case of the transition process. In addition, this limiting case is
essentially important, because it corresponds to most real applica-
tions when observed object is very remote to imaging system.
Therefore, Eqs. (20), (26), and (38) concerning point-target detec-
tion would be very promising.

This article demonstrates that optical blurring degrades SNR
and NETD performance, because it reduces signal intensity than
it is expected in ideal imaging. For many real situations, this influ-
ence cannot be neglected, so our proposed method could provide
more reliable prediction than traditional method.

Furthermore, our discussion reveals that in real applications,
system response and signal contain lots of information on system
configuration, application environment and observed object.
Equivalently, the degree of optical blurring, image size of object,
detector size and sub-pixel phasing contribute to system response.
Therefore, it is entirely possible to estimate all the values men-
tioned above from output voltage of target pixel, using our estab-
lished framework. It is also helpful for us to develop new
algorithms of object detection and recognition.

Appendix A. Some properties of ierf(x, x0)

To analyze ATF and TSF, it is necessary to define and specify
function ierf(x, x0) in detail. Ierf-function can be defined as:

ierf ðx; x0Þ ¼
1

2x0

Z x

0
erf ðt þ x0Þ � erf ðt � x0Þdt x0 – 0 ðA1Þ

Fig. A-1 shows this function with parameter x0 = 2.
Here are some properties:

Fig. 6. Apparent NETD performance in transition course.

Fig. 7. Apparent NETD performance in limiting case. Fig. A-1. Ierf-function.
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(1) ierf(x, x0) is odd function on x. This function is defined in the
interval (�1, +1), i.e.

ierf ðx; x0Þ ¼ �ierf ð�x; x0Þ ðA2Þ

(2) The limit of ierf(x, x0) with finite value of x0 is:

lim
x!þ1

ierf ðx; x0Þ ¼ 1 ðA3Þ

lim
x!�1

ierf ðx; x0Þ ¼ �1 ðA4Þ
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