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Iterative re-weighted least square (IRLS) algorithms for �1-minimization
problems require to select proper value of regularization parameter, for which
Stein’s unbiased risk estimate (SURE) – an unbiased estimate of prediction error
– is often used as a criterion for this selection. In this paper, we propose a recursive
SURE to estimate the prediction error during the IRLS iterations. Particularly, we
derive the recursion of Jacobian matrix by incorporating matrix splitting scheme
into IRLS algorithms. Numerical examples demonstrate that minimizing SURE
consistently leads to the nearly optimal reconstructions in terms of prediction
error. Theoretical derivations in this work related to the evaluation of Jacobian
matrix can be extended, in principle, to other types of regularizers and regularized
iterative reconstruction algorithms.

Keywords: Stein’s unbiased risk estimate (SURE); iterative re-weighted least
squares (IRLS); matrix-splitting

AMS Subject Classifications: 49N45; 49N60; 62J07

1. Introduction

1.1. Problem description

We consider the following linear model [1]:

y = Ax + ε, μ = Ax (1)

where y ∈ R
n is the observed data or the response vector, A = [A1, A2, . . . , Ap] ∈ R

n×p

is a deterministic design matrix with the column vectors Ai representing predictors or
features, x ∈ R

p is the vector of unknown coefficients and ε is a vector of i.i.d. centered
Gaussian random variable with variance σ 2 > 0. The regression problem is to estimate the
value x and μ.[2] To improve the prediction accuracy of the ordinary least square and ridge
regression,[3,4] it is typical to promote the sparsity of the unknown vector x , which is often
formulated as the �1-penalized linear regression [4–6]:

P(λ): min
x∈Rp

1

2
‖y − Ax‖2

2 + λ‖x‖1︸ ︷︷ ︸
L(x)

(2)
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626 F. Xue et al.

where λ > 0 is regularization parameter and ‖·‖2 (resp. ‖·‖1) denotes the �2 (resp. �1) norm.
An important feature of the problem (2) is that, depending on the regularization parameter
λ, some coefficients of x are exactly set to zero.[7] The sparsity-promoting formulation (2)
can be found in many applications of inverse problems, the typical examples are listed as
follows.

• model selection: one often would like to determine a small subset within a large
number of predictors that exhibits the strongest effects [4];

• pattern recognition: it is preferable to select only a few features that could represent
a wide range of object classes [3,8];

• signal recovery: natural images typically have sparse representation in some trans-
form domain (e.g. wavelet),[9] which gave rise to a great many sparse reconstruction
algorithms, see [5,10–12] for example;

• compressed sensing: the sparsity of a signal can be exploited to recover it from far
fewer samples than required by the Shannon–Nyquist sampling theorem.[13–15]

Notice that the problem (2) can be solved via standard convex optimization algorithms,
such as interior point (IP) method [16] and Least angle regression (LARS) algorithm.[17]
In signal processing, iterative shrinkage thresholding (IST) [18] and its variants (e.g.
thresholded-Landweber,[19] FISTA [10] and NESTA [20]) are probably the most popular
algorithms to solve (2) because of its simplicity. The basic iterative scheme of IST is [5,10]:

x (i+1) = Tλτ

(
x (i) + τ AT(y − Ax (i))

)
(3)

where TT (·) = sign(·)(| · | − T )+ is a soft-threshold function with the step-size τ . The
convergence analysis has been well studied in [12,18]. However, it is also recognized that
IST-family algorithms have slow convergence speed.[5,10,21]

Another class of algorithms – iterative re-weighted least square (IRLS) – has been
proposed for solving (2). Not limited to the �1-minimization, IRLS can also be used for
computing local minima of the non-convex problems.[22] This algorithm consists of solving
a sequence of weighted �1-minimization problems where the weights used for the next
iteration are computed from the value of the current solution.[23] The convergence analysis
of IRLS tailored for �1-minimization has been provided in [24]. It is also observed that the
IRLS-type algorithms exhibit superior performance in terms of convergence speed among
various experiments.[5,24] For this reason, we choose IRLS to solve (2) in this paper, which
will be described in Section 2.2.

These regularized iterative reconstruction algorithms (e.g. IST and IRLS) often require
selection of appropriate value for regularization parameter λ. For problem (2), typically,
the estimation accuracy is governed by the parameter λ that controls the bias-variance
trade-off (or equivalently, the balance between data smoothing and noise amplification).
A number of criteria for this selection have been proposed, e.g. discrepancy principle,[25]
the L-curve method,[26] generalized cross validation (GCV).[27] However, all of them are
either computationally expensive or difficult to evaluate. Squared-error-based criterion can
be a promising alternative to others, since the prediction accuracy is often quantified in
terms of expected prediction error (EPE for short) [3,6,28]:

EPE = E

{∥∥μ̂λ − μ
∥∥2

2

}
(4)
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Inverse Problems in Science and Engineering 627

where μ̂λ denotes the estimate of μ.
To this end, in the present paper, rather than proposing more efficient algorithm to solve

(2), we will focus on selecting an appropriate value of λ for IRLS algorithm, such that the
predicted value μ̂λ minimizes the EPE (4).

1.2. Related works

Notice that we cannot directly minimize EPE (4) to find optimal λ, since the true value μ

is unknown. Efron et al. [17] shows that the prediction risk (4) can be expressed as:

EPE = E

{∥∥μ̂λ − y
∥∥2

2 − nσ 2 + 2σ 2df(μ̂λ)
}

where df(·) denotes the degrees of freedom, defined by df(μ̂λ) = 1
σ 2

∑n
m=1

cov
(
(μ̂λ)m, ym

)
.[29,30] This estimate is also termed as C p-type statistics by Mallows [31].

However, this procedure is difficult to apply to evaluate the degrees of freedom.
CM Stein proposed an extremely useful formula to simplify the degrees of freedom,

which can be replaced by a statistically unbiased estimate [28,30]:

df(μ̂λ) =
n∑

m=1

∂(μ̂λ)m

∂ym
� divyμ̂λ

It was first proposed by CM Stein, phrased in the famous Stein’s lemma.[32] It gave rise to
Stein’s unbiased risk estimate (SURE), expressed as [7,30,33–35]:

SURE(μ̂λ) = ∥∥μ̂λ − y
∥∥2

2 − nσ 2 + 2σ 2divyμ̂λ (5)

The SURE depends solely on y, without prior knowledge of x . This can prove to be very
useful as a basis to automatically choose the parameter λ of the estimator.[35] The SURE
has been widely used in the statistics and signal processing communities, as a principled and
efficient way for parameter selection with a variety of non-linear estimators, e.g. wavelet
denoising,[36] image deconvolution [37,38] and non-local filtering.[39]

Essentially, the IST and IRLS algorithms can be regarded as the non-linear estimators
as well. For the IST-family algorithms, in [40,41], the parameter λ is optimized by SURE
minimization. Particularly, the iteration number is selected at the highest SNR improvement,
which is monitored by the SURE computation at each iteration. The optimal threshold is
also optimized for a given number of iterations. For the IRLS algorithms, in [42], λ is
updated at each iteration by minimizing SURE. However, the derivation of SURE in [42] is
problematic, since the estimate μ(i) at i th iteration is NOT a linear function of the observed
data y. Hence, SURE cannot be readily computed by a closed-form solution, as described
in [42]. We will point out the incorrect derivation of [42] in Section 2, and show the results
of [42] in Section 4.3 as our comparisons.

The difficulty of computing the last divergence term of (5) has been mentioned in
[3,43]. Though Bootstrap [3] and Monte–Carlo methods [43] can be used to compute, they
are always computationally expensive. In addition, for the iterative algorithms (e.g. IST or
IRLS), it will be more difficult to evaluate the divergence than non-iterative methods (e.g.
[36,37]).
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628 F. Xue et al.

1.3. Key contributions of this work

In this paper, we first consider the problem (2) with given λ, and propose a new approach to
evaluate the SURE for IRLS (see Algorithm 1). Then, we repeatedly perform this algorithm
for various values of λ, and finally select the optimal value that yields the minimum SURE
(see Algorithm 2).

In particular, we apply a matrix-splitting strategy to solve each iteration of IRLS, which
decouples the data-dependent term (i.e. depending on y) and linearizes the function of the
observed data y. Thus, the SURE computation is dramatically simplified: it can be performed
in a linearly recursive manner during the IRLS iterations.

1.4. Paper organization

In Section 2, we present the preliminary knowledge of Jacobian matrix, IRLS algorithms
and basic SURE formulation; we also explain why the SURE derivation of [42] is incorrect,
which necessitates the proposed recursive SURE for the valid evaluation. Section 3 derives
a recursive SURE for IRLS, by which one can monitor the prediction error at each iteration,
without referencing the unknown true data μ. Section 4 shows many numerical behaviours
of the algorithm and presents the experimental results of the numerical examples. Some
concluding remarks are summarized in Section 5.

To keep consistency throughout the paper, we use lowercase letter to denote vector,
and uppercase for matrix. The superscript T denotes the transpose of vector or matrix. We
denote the data dimension by n and p, use subscripts m and k as the entry index of vector
or matrix. The iteration is indexed by i and j .

2. Basic ingredients

2.1. Basic properties of Jacobian matrix

For the estimate μ̂λ of μ ∈ R
n , we define the Jacobian matrix J

(
μ̂λ, y

) ∈ R
n×n as:

[
J (μ̂λ, y)

]
m,k

= ∂
(
μ̂λ

)
m

∂yk

for its (m, k)th element. Hence, the SURE of (5) can be rewritten as:

SURE(μ̂λ) = ∥∥μ̂λ − y
∥∥2

2 − nσ 2 + 2σ 2Tr
(
J (μ̂λ, y)

)
(6)

where Tr denotes trace of matrix. Recalling that μ̂λ = Ax̂λ, we have:

[
J
(
μ̂λ, y

)]
m,k

= ∂
∑p

s=1 Am,s
(̂
xλ

)
s

∂yk
=

p∑
s=1

Am,s
∂
(
x̂λ

)
s

∂yk
=

p∑
s=1

Am,s

[
J
(̂
xλ, y

)]
s,k

which implies a basic property J
(
μ̂λ, y

) = AJ
(̂
xλ, y

)
, where J

(̂
xλ, y

) ∈ R
p×n . Finally,

the SURE of μ̂λ can be expressed in terms of x̂λ, i.e.

SURE(μ̂λ) = ∥∥Ax̂λ − y
∥∥2

2 − nσ 2 + 2σ 2Tr
(

AJ (̂xλ, y)
)

(7)

Therefore, in the following sections, we will focus on the estimation of x̂λ and the corre-
sponding Jacobian matrix J (̂xλ, y), from which SURE of μ̂λ can be readily obtained by
(7).
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Inverse Problems in Science and Engineering 629

2.2. IRLS algorithms

To solve the problem (2), the IRLS algorithm updates x by minimizing [5,24,42]:

x (i) = arg min
x

1

2
‖y − Ax‖2

2 + λ

2
xTW(i−1)x (8)

at i th iteration, where W ∈ R
p×p is a diagonal matrix and Wm,m = 1/

∣∣x (i)
m

∣∣ for m = 1,

2, . . . , p.1

The derivation of IRLS can be interpreted from the viewpoint of majorization mini-
mization (MM) framework,[44] which majorizes the �1-penalty term ‖x‖1. Consider 1

2 |x̃ |+
1

2|x̃ | x
2, which is an arithmetic average of |x̃ | and 1

|x̃ | x
2; it is lower bounded by the geometric

average |x |; hence, 1
2|x̃ | x

2 is a majorizer of |x | (up to a constant term independent of x).

Likewise, a majorization function for the �1-term ‖x‖1 is 1
2 xTW x , where W is given in (8).

Equation (8) is equivalent to solving iteration-dependent linear systems of the form:(
AT A + λW(i−1)

)
x (i) = AT y (9)

which leads to the following update of x (i):

x (i) =
(

AT A + λW(i−1)

)−1
AT︸ ︷︷ ︸

B(i−1)

y (10)

which is the basic iterative step of IRLS. From (10), we can see that x (i) is NOT a linear
transformation of y, since W(i−1) (and B(i−1)) is constructed by x (i−1)

m , which is dependent
on data y.

2.3. SURE formulation for ridge regression

Considering the estimation of x in linear model (1), the ridge regression is given as [3,27]:

x̂λ = (
AT A + λI

)−1
AT︸ ︷︷ ︸

Bλ

y (11)

for ridge parameter λ, where I denotes identity matrix. In this case where the matrix Bλ is
independent of y, the Jacobian matrix of x̂λ is J (̂xλ, y) = Bλ by definition, and the SURE
of μ̂λ becomes:

SURE(μ̂λ) = ∥∥Ax̂λ − y
∥∥2

2 − nσ 2 + 2σ 2Tr
(

ABλ

)
(12)

from (7).
In [3,38], the parameter λ is optimized by minimizing (12). For the i th update μ(i) =

Ax (i) = AB(i−1)y of IRLS (10), the authors of [42] made a similar derivation:

SURE(μ(i)) = ∥∥Ax (i) − y
∥∥2

2 − nσ 2 + 2σ 2Tr
(

AB(i−1)

)
Unfortunately, this formula is incorrect, due to the non-linearity between x (i) and y, as

pointed out in Section 2.2. Thus, J (x (i), y) �= B(i−1), and therefore, J (μ(i), y) �= AB(i−1).
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630 F. Xue et al.

3. Recursive SURE for IRLS algorithms

3.1. Matrix-splitting strategy to IRLS

3.1.1. Analysis of IRLS iteration

Considering the update Equation (9) of IRLS, for the 1st iteration of IRLS (i.e. i = 1), if
we initialize W(0) as identity matrix: W(0) = I , the solution to (9) is given as:

x (1) =
(

AT A + λW(0)

)−1
AT︸ ︷︷ ︸

B(0)

y

which is exactly the ridge regression (11), where matrix B(0) is independent of data y. Hence,
the Jacobian matrix is J (x (1), y) = B(0). The SURE of this step can be easily computed by
(12).

In the second and the successive iterations (i.e. i ≥ 2), x (i) is updated by (10), however,
J (x (i), y) �= B(i−1) for i ≥ 2, as emphasized in Section 2.3. Since the data-dependent
term λW(i−1) is deeply involved in the matrix B(i−1), the Jacobian matrix J (x (i), y) is not
easily derived from the direct solution (10). So we need to use alternative strategy to solve
(9), by decoupling diagonal matrix W(i−1) from B(i−1), in order to conveniently compute
J (x (i), y).

3.1.2. Matrix splitting to solve IRLS iteration

Now, consider Equation (9) for fixed iteration step i . To compute J (x (i), y), instead of the
closed-form solution (10), we apply the matrix-splitting scheme [45] to solve (9), which
splits the matrix AT A + λW(i−1) as:

AT A + λW(i−1) = (D + λW(i−1))︸ ︷︷ ︸
M

− (D − AT A)︸ ︷︷ ︸
N

(13)

for any matrix D, and the approximate solution x (i, j) is generated as follows (indexed
by j):

Mx (i, j) = N x (i, j−1) + AT y

or equivalently,

x (i, j) = M−1(N x (i, j−1) + AT y
)

(14)

provided that matrix M is invertible. The iterative method (14) is convergent to the unique
solution of (10) for any initial x (i,0), if and only if the spectral radius ρ(M−1 N ) < 1. Refer
to [45,46] for the convergence analysis.

3.1.3. Convergence analysis of matrix splitting

For efficient computation and decoupling of W(i−1), M should be chosen as an easily
invertible matrix. Hence, we choose D = α I ∈ R

p×p here, such that M is diagonal. The
following theorem states that for a certain value of α, ρ(M−1 N ) is guaranteed to be smaller
than 1.

D
ow

nl
oa

de
d 

by
 [

Pr
of

es
so

r 
A

na
to

ly
 Y

ag
ol

a]
 a

t 0
5:

52
 1

4 
M

ay
 2

01
6 



Inverse Problems in Science and Engineering 631

Theorem 3.1 If α > γmax(AT A), where γmax(AT A) denotes the maximum eigenvalue
of AT A, then, matrices M and N in (13) always satisfy ρ(M−1 N ) < 1.

Proof Under the above conditions, it is easy to verify that both matrices M and N are
positive definite. Then, by the definition of spectral radius, we have:

ρ(M−1 N ) � sup
‖x‖2=1

‖M−1 N x‖2

≤ sup
‖x‖2=1

‖M−1‖2 · ‖N x‖2

= ‖M−1‖2 · sup
‖x‖2=1

‖N x‖2

= ‖M−1‖2 · ‖N‖2

= α − γmin(AT A)

α + λw
< 1 (15)

where ‖N‖2 = α − γmin(AT A) provided that α > γmax(AT A), w is the smallest diagonal
element (also minimum eigenvalue) of W(i−1). �

Theorem 3.1 shows that if we choose D = α I with α > γmax(AT A), the matrix-splitting
iterative algorithm (14) is bound to converge to the true solution (10).

It is also observed in [45,46] that for large values of iteration number j , the solution error
decreases in magnitude approximately by a factor of ρ(M−1 N ) at each iteration step: the
smaller is the ρ(M−1 N ), the quicker is the convergence of (14). Thus, ρ(M−1 N ) should
be as small as possible for fast convergence speed.

For this particular problem setting, the value of ρ(M−1 N ) is determined by the two
parameters α and λ. There is no direct link (e.g. monotonicity) between ρ(M−1 N ) and the
parameters. However, (15) in the proof provides an upper bound of ρ(M−1 N ), and thus,
gives a strong hint of how α and λ roughly affect ρ(M−1 N ). From (15), we can see that
the upper bound of ρ(M−1 N ) is increasing of α, but decreasing w.r.t. λ. Therefore, for
faster convergence of matrix splitting, we suggest to choose α as small as possible with the
constraint α > γmax(AT A). Considering the problem (2) with fixed λ: one may expect the
convergence to be slower for smaller value of λ.

3.1.4. Numerical examples of matrix splitting

In this part, we will implement the matrix splitting algorithm to solve (9) and discuss its
numerical behaviours under various values of α and λ.

To specify Equation (9), we randomly generate matrix A, diagonal matrix W � 0 and
vector b = AT y. The true solution is given in a closed form:

xtrue = (
AT A + λW

)−1
b

The matrix-splitting scheme gives the following iterates (indexed by j):

x ( j+1) = (α I + λW )︸ ︷︷ ︸
M

−1( (α I − AT A)︸ ︷︷ ︸
N

x ( j) + b
)

with the randomly initialized x (0).
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632 F. Xue et al.

As suggested in Section 3.1.3, we evaluate α by a factor kα of γmax(AT A), i.e. α =
kα ·γmax(AT A). We use the relative error e( j)

1 (difference between two successive steps) and
true error e( j)

2 (difference between current step and true solution) as the stopping criteria:

e( j)
1 = ‖x ( j) − x ( j−1)‖2

2

‖x ( j)‖2
2

; e( j)
2 = ‖x ( j) − xtrue‖2

2

‖xtrue‖2
2

The iteration is terminated when the tolerance e( j)
1 ≤ 10−15.

Figure 1(a) shows that the spectral radius ρ(M−1 N ) is increasing w.r.t. α in this example,
thus, the algorithm converges slower for larger value of α, as shown in Figure 1(b) and (c).
We can see that it needs more than 1000 steps to converge for α = 100 · γmax(AT A) and
less than 100 steps for α = 1.1 · γmax(AT A). Hence, we choose α = 1.1 · γmax(AT A) in
the remainder of the paper.

Figure 2(a) shows that ρ(M−1 N ) decreases with larger λ in this example. Figure 2(b)
and (c) demonstrates that the algorithm needs only 6–7 steps to converge for λ = 0.1 and
more than 100 steps for λ = 10−5. It indicates that the algorithm converges slower for
smaller λ.

Figures 1 and 2 also show that the true error e( j)
2 is always consistent with the relative

error e( j)
1 , which means that the algorithm finally converges to the true solution xtrue. Hence,

it is sufficient to use only e( j)
1 as the stopping criterion.

(a) (b) (c)

Figure 1. The convergence speed of matrix-splitting w.r.t. the value of α. (a) ρ(M−1 N ) as a function

of α. (b) Relative error e( j)
1 , λ = 1 × 10−3. (c) True error e( j)

2 , λ = 1 × 10−3.

(a) (b) (c)

Figure 2. The convergence speed of matrix-splitting w.r.t. the value of λ. (a) ρ(M−1 N ) as a function

of λ. (b) Relative error e( j)
1 , kα = 1.1. (c) True error e( j)

2 , kα = 1.1.
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Inverse Problems in Science and Engineering 633

Table 1. ρ(M−1 N ) and iteration number for various values of λ and α.

λ 1 × 10−5 1 × 10−1

kα ρ(M−1 N ) # of iterations ρ(M−1 N ) # of iterations

1.1 0.8674 135 0.0141 9
10 0.9846 1081 0.1440 17
100 0.9985 9320 0.6331 61

Table 1 shows ρ(M−1 N ) and iteration number for other values of λ and α, where we can
also see that the larger ρ(M−1 N ) is, the more iterations are required to reach convergence.

In the above experiments, we use e( j)
1 = 10−15 as the stopping criterion for the

strict convergence. In practice, there is no need to set such rigorous tolerance for efficient
computation. When it is embedded in IRLS, this tolerance will affect the convergence speed
of IRLS. It will be further investigated in Section 4.3.

3.2. Recursion of Jacobian matrix

We have verified that for a certain value of α, the matrix splitting is guaranteed to converge
to the true solution. In this part, we will see that the computation of Jacobian matrix becomes
much easier by the matrix splitting.

Rewrite (14) as v = Hb for brevity, where v = x (i, j), H = M−1 and b = AT y +
N x (i, j−1). The Jacobian matrix of (14) is derived as:

[
J (v, y)

]
m,k = ∂vm

∂yk
= ∂

∑p
s=1 Hm,sbs

∂yk
=

p∑
s=1

Hm,s
∂bs

∂yk
+

p∑
s=1

bs
∂ Hm,s

∂yk
(16)

for the (m, k)th entry of Jacobian matrix. The first term of (16) is:

p∑
s=1

Hm,s
∂bs

∂yk
=

p∑
s=1

Hm,s
[
J (b, y)

]
s,k

where J (b, y) = AT + N J (x (i, j−1), y) by the property of Jacobian matrix (see
Section 2.1).

Considering the diagonal matrix H :

∂ Hm,s

∂yk
=

∂

[(
λW(i−1) + α

)−1
]

m,s

∂yk
=

⎧⎨
⎩

∂
(
λ

∣∣x(i−1)
m

∣∣−1+ α
)−1

∂yk
if m = s

0 otherwise

where

∂
(
λ
∣∣x (i−1)

m
∣∣−1 + α

)−1

∂yk
=

∂
(
λ
∣∣x (i−1)

m
∣∣−1 + α

)−1

∂
∣∣x (i−1)

m
∣∣ · ∂|x (i−1)

m |
∂x (i−1)

m

· ∂x (i−1)
m

∂yk

=
(
λ
∣∣x (i−1)

m

∣∣−1 + α
)−2 · λ∣∣x (i−1)

m
∣∣2

· sign
(
x (i−1)

m

)
︸ ︷︷ ︸

Em,m

·∂x (i−1)
m

∂yk
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634 F. Xue et al.

the second term of (16) becomes:

p∑
m=1

bm
∂ Hm,m

∂yk
=

p∑
m=1

bm Em,m
∂x (i−1)

m

∂yk
=

p∑
m=1

bm Em,m
[
J (x (i−1)

m , y)
]

m,k

Finally, (16) becomes:

J
(
x (i, j), y

) = M−1 AT + M−1 N J
(
x (i, j−1), y

) + C J
(
x (i−1), y

)
(17)

where diagonal matrix C = diag(bm)diag(Em,m) ∈ R
p×p, and its mth diagonal element is

given as:

[C]m,m =
(

AT y + N x (i, j−1)
)

m
·
(

λ∣∣x (i−1)
m

∣∣ + α

)−2

· λ∣∣x (i−1)
m

∣∣2
· sign

(
x (i−1)

m

)
for m = 1, 2, . . . , p. The key Equation (17) expresses the recursion of Jacobian matrix.

Thus, we can compute the SURE by (7) and (17) during the IRLS iterations:

SURE(μ(i)) = ∥∥Ax (i) − y
∥∥2

2 − nσ 2 + 2σ 2Tr
(

AJ (x (i), y)
)

and

SURE(μ(i, j)) = ∥∥Ax (i, j) − y
∥∥2

2 − nσ 2 + 2σ 2Tr
(

AJ (x (i, j), y)
)

where x (i+1) = x (i,∞) and J (x (i+1), y) = J (x (i,∞), y), assuming that matrix splitting is
converged at j = ∞.

3.3. Summary of IRLS algorithm with matrix-splitting strategy

Finally, we summarize the proposed IRLS-MS-SURE algorithm as Algorithm 1, where the
matrix splitting (‘MS’for short) is embedded in every IRLS iteration. This algorithm enables
us to solve the problem (2) with a prescribed value of λ, and simultaneously evaluate the
SURE during the IRLS iterations.

For the embedded matrix splitting algorithm (i.e. inner iteration on j), we use e( j) as
the stopping criterion:

e( j) = ‖x (i, j+1) − x (i, j)‖2
2

‖x (i, j)‖2
2

≤ some tolerance for j th iteration with fixed i

Since the IRLS algorithm (i.e. outer iteration on i) is to minimize the objective functional
(2). We use the relative error of L(x):

e(i) =
∣∣L(x (i+1)) − L(x (i))

∣∣
L(x (i))

≤ some tolerance for i th iteration

as the stopping criterion.
To find the optimal λ with minimum SURE,Algorithm 2 uses a simple exhaustive search

over a number of tentative values of λ, for each of them Algorithm 1 is repeatedly applied
to compute the SURE.
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Algorithm 1: IRLS-MS-SURE Algorithm
Input: objective function given as (2), observed data y, design matrix A, parameter λ

Output: IRLS estimate x̂λ, μ̂λ, and SURE(μ̂λ).
begin

1 Initialize W(0) = I ;

2 For 1st iteration (i = 1): compute x(1) and J (x(1), y) by (11) and (12);
while stopping criterion not met (iterations on i) do

(1) set i = 2, initialize x(i,0) = x(i−1) and J (x(i,0), y) = J (x(i−1), y) for j = 0,
compute W(i−1) by x(i−1);

while stopping criterion not met (iterations on j) do
1© compute x(i, j) by (14);
2© update J (x(i, j), y) by (17);
3© j := j + 1;

end
(2) x(i+1) = x(i, j+1), J (x(i+1), y) = J (x(i, j+1), y);
(3) i := i + 1;

end
3 x̂λ = x(i+1), μ̂λ = Ax̂λ, compute SURE(μ̂λ) by (7).

end

Algorithm 2: Optimization of λ for IRLS Algorithm
Input: objective function given as (2), observed data y, design matrix A
Output: optimal λopt, the corresponding IRLS estimates x̂λopt and μ̂λopt

begin
1 Set K sample values of λ: λ1, λ2, . . . , λK ;
for k = 1, 2, . . . , K do

perform Algorithm 1 with given λk , to obtain x̂λk , μ̂λk and SURE(μ̂λk )

end
2 find minimum value of SURE, and optimal λopt = arg minλk SURE(μ̂λk ).
3 compute x̂λopt and μ̂λopt by Algorithm 1 with λopt.

end

4. Experimental results and discussions

4.1. Experimental setting

In this section, we randomly generate the matrix A ∈ R
300×500, and set x ∈ R

500 as a sparse
vector with very few non-zeros (in this example, 10 non-zeros elements). Then, we add the
noise ε with noise variance σ 2 to obtain the observed data y = Ax + ε, such that the input
SNR is 10 dB.2 Now, we are going to apply Algorithms 1 and 2 to solve (2).

4.2. Matrix-splitting scheme in IRLS

In this part, we will show the results of matrix-splitting algorithm (14) during the IRLS.
As suggested in Section 3.1.3, we set α = 1.1 · γmax(AT A) for fast convergence and
e( j) ≤ 10−10 as the stopping criterion.
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636 F. Xue et al.

(a) (b) (c)

Figure 3. The convergence of matrix splitting in second iteration of IRLS (i = 2). (a) Relative error
e( j). (b) SURE and oracle EPE for λ = 0.1. (c) SURE and oracle EPE for λ = 10.

(a) (b) (c)

Figure 4. The convergence of matrix splitting in 10th iteration of IRLS (i = 10). (a) Relative error
e( j). (b) SURE and oracle EPE for λ = 0.1. (c) SURE and oracle EPE for λ = 10.

Figure 3 shows the convergence of matrix splitting during the second outer iteration of
IRLS (i.e. i = 2) for λ = 0.1, 1.0 and 10. Figure 3(a) shows the relative error e( j) decreasing
to below 10−10. We can see that the smaller ρ(M−1 N ) (i.e. larger λ) leads to faster
convergence of matrix splitting. Figure 3(b) and (c) shows the SURE and corresponding EPE
for λ = 0.1 and 10, respectively. We use maximum error eSURE = max j

|EPE( j)−SURE( j)|
|EPE( j)|

among all the iterations j , to quantify the closeness of SURE to EPE. The small errors
indicate that the SURE always coincides with EPE very well.

Figure 4 shows the case of 10th iteration of IRLS (i.e. i = 10). Comparing Figure 4
with Figure 3, we can see that the matrix splitting converges significantly faster as the IRLS
iteration i proceeds. The reason behind it is probably that x (i) tends to be sparser with the
IRLS iteration i : the increments of the diagonal elements of W (i) result in the reduction of
ρ(M−1 N ).

It is not advised to discuss the tolerance sensitivity of matrix splitting for the moment,
since this tolerance has great influence on the convergence speed and computational time of
the IRLS, when matrix splitting is embedded in IRLS. We will give a thorough discussion
on this problem in Section 4.3.

4.3. Convergence of IRLS algorithm and comparison with IST

In this part, we will show the convergence of IRLS algorithm and the comparisons with
IST. We perform the standard IST algorithm iterated as Equation (3), where we choose the
step-size τ = 10−4. We set e(i) ≤ 10−7 as the stopping criterion for both IRLS and IST
algorithms.
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Inverse Problems in Science and Engineering 637

We compare the following iterative algorithms in terms of both convergence speed and
computational time:

• IST: standard IST with iterates (3);
• IRLS: standard IRLS with direct solution (10), rather than matrix-splitting (14);
• IRLS-MS: use matrix-splitting (14) to solve each IRLS iteration;
• IRLS-MS-SURE: perform matrix-splitting (14), and compute SURE (17) simultane-

ously, during each IRLS iteration.

To study the influence of the MS tolerance e( j) upon the IRLS convergence, we test the
following four tolerances of e( j):

• IRLS-MS-1 and IRLS-MS-SURE-1: e( j) ≤ 10−1;
• IRLS-MS-2 and IRLS-MS-SURE-2: e( j) ≤ 10−5;
• IRLS-MS-3 and IRLS-MS-SURE-3: e( j) ≤ 10−10;
• IRLS-MS-4 and IRLS-MS-SURE-4: e( j) ≤ 10−15;

From Figure 5(a) and (b), we can see that IRLS converges substantially faster than IST
by two orders of magnitude in terms of the outer iteration number. When the direct solution
(10) is replaced by matrix-splitting scheme, the IRLS converges much slower:

(1) IRLS has slower convergence for looser tolerance e( j);
(2) The stricter tolerance is e( j), the less iterations IRLS needs to converge. The direct

solution (10) can also be regarded as an extreme case, where the tolerance e( j) = 0
for the exact solution.

On the other hand, the stricter tolerance e( j) requires more iterations of matrix splitting,
as shown in Figures 3 and 4. It reflects that a strict tolerance e( j) will save a great many
IRLS iterations at the cost of considerably increasing iterations of matrix splitting. It needs
much more MS iterations to solve each IRLS iteration, if less steps are required to converge
for IRLS. Hence, there is a trade-off between the inner matrix splitting and outer IRLS in
terms of whole computational complexity and time. We will see it later.

Figure 5(c) shows the SURE (and the oracle EPE) of the estimate μ(i) during the IRLS
iterations (the case of e( j) ≤ 10−10). The error of SURE is 7.13×10−3, which demonstrates
that the SURE is a very accurate estimator of true prediction error. We also present the result
of [42]: the SURE computed by [42] is not a valid estimator of the true prediction error, as
we pointed out in Section 2.

Figures 6 and 7 show the IRLS convergence for λ = 1.0 and 10. In addition, Figures
5–7 also show the sensitivities of IRLS to the tolerance e(i). For efficient implementation,
we often do not need to use the strict tolerance e(i) ≤ 10−7. Typically, we use e(i) ≤ 10−4

instead, since Figures 5–7 show that 10−4 – tolerance could greatly reduce the iterations
to converge, while keeping the similar solution accuracy. Comparing the two solutions: x̂1
(terminated when e(i) ≤ 10−7) and x̂2 (terminated when e(i) ≤ 10−4), we calculated that

the relative difference
‖x̂1−x̂2‖2

2
‖x̂1‖2

2
≈ 10−9, which implies the negligible difference between

x̂1 and x̂2. Hence, we choose e(i) ≤ 10−4 in the following experiments for computational
efficiency.
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638 F. Xue et al.

(a) (b) (c)

Figure 5. The convergence of IRLS for λ = 0.1. (a) Objective functional L(x(i)). (b) Relative error
e(i). (c) SURE and oracle EPE of μ(i).

(a) (b) (c)

Figure 6. The convergence of IRLS for λ = 1.0. (a) Objective functional L(x(i)). (b) Relative error
e(i). (c) SURE and oracle EPE of μ(i).

(a) (b) (c)

Figure 7. The convergence of IRLS for λ = 10. (a) Objective functional L(x(i)). (b) Relative error
e(i). (c) SURE and oracle EPE of μ(i).

Table 2 lists a complete comparison of IST and various versions of IRLS in terms of
computational time. The standard IRLS is faster than standard IST. However, IRLS may
become slower if the direct solution (10) is replaced by matrix splitting (14), especially
when the matrix splitting has very slow convergence speed (e.g. λ = 0.1 and 1.0). For
IRLS-MS, the computational time is very sensitive to the tolerance e( j). The shortest time
is highlighted in Table 2. Comparing different tolerances e( j) of matrix splitting, we can see
that despite of requiring much more steps to converge of IRLS, the looser tolerance e( j) (e.g.
10−1 and 10−5) is more computationally efficient than strict one (e.g. 10−10 and 10−15). It
implies that the slow MS convergence cannot be compensated by fast convergence of IRLS,
if e( j) ≤ 10−10 or 10−15, i.e. the MS convergence is more dominant than IRLS convergence
in terms of computational time. We choose e( j) ≤ 10−5 in the following experiments, since
it leads to the fastest computation generally.
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Table 2. Computational time of various algorithms (units: seconds) (tolerance: e(i) ≤ 10−4).

Algorithms IST IRLS
IRLS-MS IRLS-MS-SURE

1 2 3 4 1 2 3 4

λ = 0.01 0.05 0.12 0.006 0.006 3.38 164.40 0.04 0.03 310.20 12219.98
λ = 0.1 8.59 0.18 2.17 2.18 3.36 24.48 37.84 35.36 269.08 1989.05
λ = 1.0 2.95 0.15 1.38 1.43 1.01 3.51 24.50 22.23 72.47 299.91
λ = 10 0.47 0.11 0.25 0.14 0.22 0.47 4.33 3.02 14.55 34.52
λ = 100 0.11 0.07 0.06 0.04 0.09 0.15 0.98 1.13 4.21 8.16

However, notice that the convergence speed of IRLS algorithms also crucially depends
on the initialization of W . The running time reported in Table 2 is based on W (0) = I . We
will propose another initialization of W to remarkably accelerate the algorithm in Section
4.4. In addition, comparing IRLS-MS and IRLS-MS-SURE, we can see that most time is
consumed by computing Jacobian matrix and recursive SURE.

4.4. Selection of parameter λ and the optimal solution of IRLS

In this part, we are going to implement Algorithm 2, to select λ with minimum SURE. We
empirically set the search range of λ as [10−2, 104], and pick up K = 50 logarithmically
spaced values of λ. We implement IRLS-MS-SURE algorithm 50 times (for each λk), with
the tolerances as e( j) ≤ 10−5 and e(i) ≤ 10−4. The result is shown in Figure 8(a): the optimal
value of λ is 29.47. We can also see that the SURE is very close to the true prediction error.

We compare our result with IST and ridge regression. For standard IST, we update λ

according to the discrepancy principle ‖y − Ax (i)‖2
2 = nσ 2 (refer to [5] for more details).

For ridge regression (11), it is easy to compute the SURE for each tentative λk by the closed
form (12). Figure 8(b) shows that the optimal value of λ for ridge regression is 59.64.

Figures 9 and 10 show the estimations of x and μ by various algorithms. For better
legibility and visual comparison, we only present the first three small fractions of the whole
data: 1 ∼ 50, 50 ∼ 100 and 100 ∼ 150. Figure 10(d)–(f) shows the difference μ̂ − μ

between estimate μ̂ and true μ. We can see that the proposed IRLS-MS-SURE algorithm
yields better estimates than others.

(a) (b)

Figure 8. SURE and oracle EPE of μ̂λ as the functions of parameterλ. (a) IRLS-MS-SURE algorithm.
(b) Ridge regression.

D
ow

nl
oa

de
d 

by
 [

Pr
of

es
so

r 
A

na
to

ly
 Y

ag
ol

a]
 a

t 0
5:

52
 1

4 
M

ay
 2

01
6 



640 F. Xue et al.

(a) (b) (c)

Figure 9. The estimations of x by various methods. (a) First fraction of x . (b) Second fraction of x .
(c) Third fraction of x .

(a) (b) (c)

(d) (e) (f)

Figure 10. The estimations of μ by various methods. (a) First fraction of μ. (b) Second fraction of
μ. (c) Third fraction of μ. (d) Difference of first fraction of μ. (e) Difference of second fraction of μ.
(f) Difference of third fraction of μ.

Table 3. Estimation errors and total running time by various algorithms.

Algorithms ridge IST IRLS-MS-SURE

ex 1.84 × 10−2 2.30 × 10−3 7.17 × 10−4

eμ 1.57 1.38 0.30
Time (in seconds) 1.92 5.63 12.51

Table 3 reports the estimation errors and total running time of the algorithms. The errors
are defined as ex = 1

p ‖x̂ − x‖2
2 and eμ = 1

n ‖μ̂−μ‖2
2, where x̂ and μ̂ are the estimates of x

and μ by these algorithms. The errors of IRLS are smaller than IST and ridge regression by
one order of magnitude. The total computational time of IRLS and ridge includes K = 50
times of implementations for each λk to optimize λ. It is no surprise that ridge regression
is the fastest due to its non-iterative nature, but worth noting that IRLS is slightly slower
than IST, despite of 50 times of implementations of IRLS-MS-SURE. An important reason
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(a) (b)

Figure 11. SURE and oracle EPE of μ̂λ as the functions of parameter λ. (a) IRLS-MS-SURE
algorithm. (b) Ridge regression.

for the fast speed is that for (k + 1)th value λk+1, W (0) is initialized by the solution x̂k of
the previous value λk : W (0)

m,m = 1/
∣∣(̂xk)m

∣∣ for m = 1, 2, . . . , p. This initialization would
greatly accelerate the IRLS convergence, comparing to the initialization of W (0) as identity.

4.5. Some real applications

We have discussed the proposed IRLS-MS-SURE algorithm from many perspectives, taking
random data for example. Now, we are going to show some real applications.

4.5.1. Spline interpolation

In this part, we consider spline interpolation. Suppose we have a signal μ(t) that can
be expressed as a linear combination of the basis functions {φ(t − k)}k∈Z : μ(t) =∑p−1

k=0 xkφ(t − k), where {φ(t − k), k ∈ Z} form a Riesz basis. Here, φ(t − k) is assumed
as shifted cubic B-splines. We also assume that μ(t) is sparse in {φ(t − k), k ∈ Z}
basis, and hence the vector x = [x0, x1, . . . , x p−1]T ∈ R

p has few non-zero entries.
We have measurements {ym}n

m=1 of the form ym = μm + εm , where {εm}n
m=1 are i.i.d.

realizations of a Gaussian distributed random variable with zero mean and variance σ 2, and
μm = ∑p−1

k=0 xkφ(m − k) are the samples of μ(t). We set the data dimension as n = p =
1000, and there are only 10 non-zeros coefficients in vector x . We then add a large value
of noise variance σ 2, such that the input SNR is 10 dB. The linear model (1) exactly suits
the problem, when A ∈ R

n×p is a matrix whose (m, k)th entry is Am,k = φ(m − k). The
sparsity is enhanced, as the regularization parameter λ in (2) increases. Now, we are to find
the optimal λ, to achieve the minimum prediction error.

Figure 11 shows the SURE as a function of λ for IRLS and ridge regression. By the
optimal values of λ, Figures 12 and 13 show the signal reconstruction by various algorithms.
For better visual comparison, we only present a number of small segments of the high-
dimensional data x and μ.

Table 4 presents the estimation errors and computational time of the algorithms. We can
see the superior performance of the proposed algorithm.
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642 F. Xue et al.

(a) (b) (c)

Figure 12. The estimations of x by various methods. (a) First fraction of x . (b) Second fraction of x .
(c) Third fraction of x .

(a) (b) (c)

Figure 13. The estimations of μ by various methods. (a) First fraction of μ. (b) Second fraction of
μ. (c) Third fraction of μ.

4.5.2. Deconvolution of 1-D signal

Let us now treat the linear model (1) as the convolutional observation. Suppose we have a
sparse 1-D signal x ∈ R

p with very few non-zero elements, which is blurred by a Gaussian
kernel a, and then corrupted by the Gaussian noise ε, s.t. the input SNR is 10 dB. Then,
we have the distorted data y = Ax + ε where the convolution matrix A is constructed by
the Gaussian kernel a, and becomes circulant under the periodic boundary condition being
considered.

Table 4. Estimation errors and running time by various algorithms.

Algorithms Ridge IST IRLS-MS-SURE

ex 2.59 × 10−3 4.59 × 10−4 1.25 × 10−4

eμ 7.62 × 10−4 2.26 × 10−4 6.09 × 10−5

Time (in seconds) 2.13 15.84 21.66

Figure 14 shows the SURE as a function of λ for IRLS and ridge regression. By the
optimal values of λ, Figures 15 and 16 show the deconvolution results by various algo-
rithms. For better visual comparison, we only present several small segments of the signals
x and μ.

Table 5 presents the estimation errors and computational time of the algorithms. The
proposed algorithm achieves higher estimation accuracy than others.

D
ow

nl
oa

de
d 

by
 [

Pr
of

es
so

r 
A

na
to

ly
 Y

ag
ol

a]
 a

t 0
5:

52
 1

4 
M

ay
 2

01
6 



Inverse Problems in Science and Engineering 643

(a) (b)

Figure 14. SURE and oracle EPE of μ̂λ as the functions of parameter λ. (a) IRLS-MS-SURE
algorithm. (b) Ridge regression.

(a) (b) (c)

Figure 15. The estimations of x by various methods. (a) First fraction of x . (b) Second fraction of x .
(c) Third fraction of x .

(a) (b) (c)

Figure 16. The estimations of μ by various methods. (a) First fraction of μ. (b) Second fraction of
μ. (c) Third fraction of μ.

Table 5. Estimation errors and running time by various algorithms.

Algorithms ridge IST IRLS-MS-SURE

ex 1.40 × 10−2 1.26 × 10−2 9.55 × 10−4

eμ 8.22 × 10−5 4.96 × 10−4 1.95 × 10−5

Time (in seconds) 2.15 20.11 18.12
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5. Conclusion

SURE has been proven to be a powerful tool to select regularization parameter. In this paper,
to solve �1-minimization problem, we proposed a recursive SURE for IRLS algorithms
based on matrix splitting scheme. It enables us to monitor the prediction loss (actually,
an unbiased estimator of prediction loss – SURE) during the iterations of IRLS, without
referring to the true unknown data.

Numerical results showed that the selected regularization parameter by SURE minimiza-
tion consistently yields optimal sparse recovery in terms of prediction loss. We would also
like to emphasize that the philosophy underlying theoretical developments in this work can
also be extended, in principle, to handle other regularizers and reconstruction algorithms,
e.g. total-variation regularization and IST-family algorithms.
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Notes

1. To avoid numerical instability, we use max
{
|x(i)

m |, 10−15
}

for the denominator in W(i−1) in the
implementation, see [5,23,24] for the similar treatment.

2. Input signal-to-noise ratio (SNR) is defined as: 10 log10

(
‖μ‖2

2
‖y−μ‖2

2

)
= 10 log10

(
‖μ‖2

2
Nσ 2

)
in dB.
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