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Abstract Point spread function (PSF) estimation plays an
important role in blind image deconvolution. This paper
proposes two novel criteria for parametric PSF estimation,
based on Stein’s unbiased risk estimate (SURE), namely,
prediction-SURE and its variant. We theoretically prove
the SURE-type functionals incorporating exact (comple-
mentary) smoother filtering as the valid criteria for PSF
estimation. We also provide the theoretical error analysis for
the regularizer approximations, by which we show that the
proposed frequency-adaptive regularization termyieldsmore
accurate PSF estimate than others. In particular, the proposed
SURE-variant enables us to avoid estimation of noise vari-
ance,which is a key advantage over the traditional SURE-like
functional. Finally, we propose an efficient algorithm for the
minimizations of the criteria. Not limited to the examples we
show in this paper, the proposed SURE-based framework has
a great potential for other imaging applications, provided the
parametric PSF form is available.

Keywords Blind deconvolution · Parametric PSF
estimation · Prediction-SURE · SURE-variant

1 Introduction

1.1 Problem Statement

In this paper, we consider the following observation model

y = H0x + b; μ = H0x, (1)
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where y ∈ R
N is the observed data of the original (unknown)

x ∈ R
N ,H0 ∈ R

N×N is a ground truth (unknown) convolu-
tion matrix constructed by PSF h0, the vector b ∈ R

N is a
zero-mean additive white Gaussian noise with variance σ 2.
Blind image deconvolution attempts to estimate the original
image x, from the observed data y only.

1.2 Related Works

This problem has been an important image processing topic
for several decades, and recent contributions can be found
in [2,9,16,22,23]. Examples of real applications include
medical imaging [19], fluorescence microscopy [28], astro-
nomical imaging [20], remote sensing [26], and infrared
detection [35]. Blind deconvolution is a highly ill-posed
problem. To tackle the ill-posedness, it is often to apply reg-
ularization or Bayesian approaches, which enforce certain
regularity conditions on the original image and point spread
function (PSF), and formulate deconvolution as a constrained
optimization problem [9,22]. Peoplemay refer to [4,7,15,21]
for a comprehensive review.

In our preceding works [32–34], we apply the separate
strategy where PSF estimation is followed by non-blind
deconvolution, and focus on the parametric PSF estimation.
Refer to [34] and references therein for relevant literature
review. A number of methods have been proposed for para-
metric PSF estimation, e.g., GCV [27], kurtosis [17], DL1C
[10], and APEX [8]. Refer to [34] for thesemethods and their
limitations.

1.3 SURE-Based Approach

Recently, Stein’s unbiased risk estimate (SURE), which was
first proposed by Stein [29], has been revitalized in signal
processing field.
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SURE is an unbiased estimate of the mean squared error
(MSE) under additive Gaussian noise assumption. Math-
ematically, considering the linear model (1) with exactly
knownH0, we denote a function (or processing) by f , applied
to the observed data y. The standard MSE, referring to the
estimation of x, is defined as [13]

MSE = 1

N

∥
∥f(y) − x

∥
∥2, (2)

where f(y) is an estimate of x by processing f . Correspond-
ingly, the standard SURE is formulated as [13]

SURE

= 1

N

(∥
∥f(y)

∥
∥
2 − 2yTH−T

0 f(y) + 2σ 2divy
(

H−T
0 f(y)

) + ‖x‖2
)

,

(3)

where the divergence is divyv = ∑N
n=1

∂vn
∂yn

. The statistical
unbiasedness of the SURE w.r.t. MSE has been proved in
[13]. As SURE depends on the observed y only1, it can be
used as a practical substitute for the true MSE. For signal
processing, SURE is often used as a criterion for denois-
ing [12] and non-blind deconvolution [13,25,31]. The key
advantage of the SURE-based approach is that it does not
require any prior knowledge of the original image x.

For blind deconvolution, in our preceding works [32–34],
we proposed a modified version of SURE as a criterion for
parametric PSF estimation. However, there are three main
limitations with the methods.

– There is no theoretical analysis to guarantee that apply-
ing some regularizer as approximation, the SURE-type
minimization will yield accurate PSF estimate. This is a
rather strong claim that needs an error analysis for the
approximation.

– The regularization terms used in [32–34] are not adaptive
to various types of images, and thus, they cannot consis-
tently yield the good PSF estimates for a wide range of
natural images. Is it possible to propose an adaptive reg-
ularizer to improve this estimation accuracy?

– The computation of the SURE-like estimate requires the
knowledge of the noise variance, which is, unfortunately,
often unknown in practice. One has to estimate it in
advance. Is it possible to develop a novel criterion, which
does not depend on noise variance?

1.4 Our Contributions

As a continuation of the precedingworks [32–34], the present
paper reports the recent research progress to address the fore-

1 The last term ‖x‖2 of (3) is a constant irrelevant to the optimization
of function f .

going problems. Correspondingly, the key contributions of
this work are as follows.

– We provide a theoretical error analysis to directly link the
approximations of (complementary) smoother filtering to
the PSF estimation accuracy.

– To adapt to any type of natural images, we propose
a frequency-adaptive regularization term, which yields
more accurate PSF estimate than others, especially under
high noise levels.

– Wepropose a variant of SUREas anovel criterionwithout
need of knowledge of noise variance, and theoretically
prove it as a valid objective functional for PSF estimation.

In addition, by the theoretical analysis and the cross-
validation experiments (see Sect. 6.6), we demonstrate the
wide applicability and robustness of the proposed criteria:
even if the retrieved PSF does not belong to the same family
as the underlying true one, the proposed SURE-functionals
always naturally find the best estimate within the assumed
parametric form.

1.5 Paper Organization

Based on prediction-MSE, Sect. 2 provides a theoretical error
analysis for the regularizer approximation, and proposes a
frequency-adaptive regularizer. In Sect. 3, we particularly
derive a prediction-SURE for the proposed data-dependent
regularizer. Section 4 proposes a variant of SURE that is
independent of noise variance andproves it as a valid criterion
for PSF estimation. In Sect. 5, we provide an analysis to
evaluate the reliability of the estimators (both prediction-
SURE and SURE-variant), and summarize the SURE-type
framework. In Sect. 6, we exemplify the proposed framework
with two particular types of PSF, and report the experimental
results for thorough discussions. Some concluding remarks
are finally given in Sect. 7.

1.6 Additional Remarks

Throughout this paper, we use boldface lowercase letters,
e.g., x ∈ R

N , to denote N -dimensional real vectors, where
N is typically the number of pixels in an image. The n-th
element of x is written as xn . The linear (matrices) and non-
linear transformations RN → R

M are denoted by boldface
uppercase letters, e.g., H ∈ R

M×N . HT ∈ R
N×M denotes

the transpose of matrix H. The notation Hs is used, if H is
represented by a small number of parameters, say parameter
vector s. Also note that we use the subscript (·)0 to denote
the true (“ground truth”) quantity of (·); for example, matrix
H0 is the true quantity of H.

In this paper, we always assume periodic boundary condi-
tion for convolution and deconvolution, so that the linear
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filtering can be computed by discrete Fourier transform
(DFT). The convolution matrix (e.g., H0 in (1)) is circulant
and can, therefore, be diagonalized by DFT. We denote the
frequency representation of convolution matrix H by H(ω),
and particularly, Hs(ω), if H is described by the parameter
vector s. Denote theDFT coefficients of data, say x, by X (ω).

In the presentation, we will switch repeatedly between
frequency domain and matrix language. An important rea-
son for this alternation of viewpoints is that the frequency
expressions are easy to understand and manipulate, but less
compact and concise than matrix notations. We also want
to emphasize in this way the close links between the two
domains.

2 Regularizer Approximation and Error Analysis

Based on the linear model (1), the main purpose of this paper
is to estimate the matrix H0, from the observed data y. In
this part, we will explain why the standard MSE/SURE fails
to estimate H0, and then, summarize the main result of our
previous work [34], which is a fundamental of this paper.

2.1 Theoretical Background

2.1.1 Why Standard MSE/SURE Fails?

Werestrict ourselves to linear processing f , denotedbymatrix
U ∈ R

N×N . Then, the standard MSE (2) can be written as

MSE = 1

N

∥
∥Uy − x

∥
∥
2
. (4)

If the original data x is exactly known, the expected MSE
can be used as an oracle2 criterion of PSF estimation, stated
as follows.

Theorem 1 Consider the linear function U in (4) as exact
Wiener filtering, defined as

U = SxHT(

HSxHT + σ 2I
)−1 ⇐⇒ U (ω)

= H∗(ω)

|H(ω)|2 + σ 2/Sx (ω)
, (5)

where Sx = E{xxT}, I is identity in matrix notation. H(ω)

and U (ω) are the frequency representations of matrices H
and U. Sx (ω) denotes the power spectral density (PSD) of
original image x. Then, minimizing the expected MSE over
H yields that

2 Oracle means that this criterion is not accessible in practice, due to
the unknown x in (4).

H∗(ω)

|H(ω)|2 + σ 2/Sx (ω)
︸ ︷︷ ︸

U (ω)

= H∗
0 (ω)

|H0(ω)|2 + σ 2/Sx (ω)
︸ ︷︷ ︸

U0(ω)

,

and therefore, H(ω) = H0(ω) for ∀ω.

Proof First, consider the minimization of expected MSE
over all possible linear processings U:

min
U

1

N
E

{∥
∥Uy − x

∥
∥2

}

.

Replacing y by H0x + b as (1), the expected MSE becomes

Expected MSE = 1

N
E

{∥
∥Uy − x

∥
∥2

}

= 1

N
E

{∥
∥U(H0x + b) − x

∥
∥
2
}

= 1

N
E

{∥
∥(UH0 − I)x + Ub

∥
∥2

}

= 1

N
E

{∥
∥(UH0 − I)x

∥
∥2

}

+ 1

N
E

{∥
∥Ub

∥
∥2

}

= 1

N
Tr

(

(UH0 − I)Sx(UH0 − I)T
)

+ 1

N
σ 2Tr

(

UUT)

,

where Tr denotes matrix trace, I is identity matrix. The
covariance matrices are Sx = E{xxT}, σ 2I = E{bbT}. Thus,
the minimization over U yields that

(

H0SxHT
0 + σ 2I

)

U0 −
SHT

0 = 0, which implies that

U0 = SxHT
0

(

H0SxHT
0 + σ 2I

)−1

is a global minimizer of expected MSE.
If we base our linear processingU as (5), theminimization

of expected MSE over H becomes

SxHT(

HSxHT + σ 2I
)−1 = SxHT

0

(

H0SxHT
0 + σ 2I

)−1
,

from which we conclude that H = H0. It is equivalent to
H(ω) = H0(ω) in frequency domain. 	


This theorem demonstrates that incorporating exact
Wiener filtering (5), theminimization of expectedMSEcould
produce exact PSF estimation. However, the standard MSE
(4) cannot be accessed due to the unknown x. Following (3),
the corresponding SURE for this case is expressed as

SURE= 1

N

(∥
∥Uy)

∥
∥2−2yTH−T

0 Uy+2σ 2Tr
(

H−T
0 U

)+‖x‖2
)

.

(6)

We observe that the standard SURE is also inaccessible in
practice, since H0 is unknown. Thus, SURE fails to be a
practical criterion for PSF estimation.
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2.1.2 Prediction-MSE—An Oracle Criterion for PSF
Estimation

Instead of the standard MSE and SURE, [34] proposed the
following predictive version of MSE, namely prediction-
MSE (P-MSE):

P-MSE = 1

N

∥
∥Uy − H0x

∥
∥
2 (7)

and prove its expectation as an oracle3 criterion for PSF
estimation. The term prediction-MSE stems from model
selection problem [1], for the use of predicting the value of
μ = H0x, instead of the value of x4. Nevertheless, it should
be re-emphasized that we are interested in estimating H0,
rather than the value of μ.

Theorem 2.1 of [34] shows that given U as an exact
smoother matrix (described below), the solutionH that mini-
mizes the expected prediction-MSE has the same magnitude
as the true matrix H0 in frequency domain. For ease of the
following discussions, let us restate the theorem and its proof
here.

Theorem 2 Consider the linear function U in (7) defined as

U = HSxHT(

HSxHT + σ 2I
)−1 ⇐⇒ U (ω)

= |H(ω)|2
|H(ω)|2 + σ 2/Sx (ω)

, (8)

where all the notations have been described in Theorem 1.
Then, minimizing the expected prediction-MSE overH yields
that

|H(ω)|2
|H(ω)|2 + σ 2/Sx (ω)
︸ ︷︷ ︸

U (ω)

= |H0(ω)|2
|H0(ω)|2 + σ 2/Sx (ω)
︸ ︷︷ ︸

U0(ω)

,

and therefore, |H(ω)| = |H0(ω)| for ∀ω.

Proof First, consider the minimization of expected P-MSE
over all possible linear processings U:

min
U

1

N
E

{∥
∥Uy − H0x

∥
∥2

}

.

Replacing y by H0x + b as (1), and applying the similar
derivation with proof of Theorem 1, the expected P-MSE
finally becomes

3 Oracle means that this criterion is not accessible in practice, due to
the unknown H0x in (7).
4 Following the convention of [14], we refer to estimation of x as esti-
mation, and to estimation of μ = H0x as prediction.

Expected P-MSE = 1

N
Tr

(

(U − I)H0SxHT
0 (U − I)T

)

+ 1

N
σ 2Tr

(

UUT)

, (9)

where all the notations were described in Theorem 1. Thus,
the minimization over U yields that (U0 − I)H0SxHT

0 +
σ 2U0 = 0, which implies that

U0 = H0SxHT
0

(

H0SxHT
0 + σ 2I

)−1

is a global optimizer of expected prediction-MSE.
If we base our linear processingU as (8), theminimization

of expected P-MSE over H becomes

HSxHT(

HSxHT + σ 2I
)−1 = H0SxHT

0

(

H0SxHT
0 + σ 2I

)−1
,

fromwhichwe conclude thatHSxHT = H0SxHT
0 . It is equiv-

alent to |H(ω)| = |H0(ω)| in frequency domain. 	

The frequency description of Theorem 2 and the phase

limitation have been mentioned in Corollary 2.1 of [34]. See
Fig. 4 for experimental demonstration of this theorem.

Here, it should be noted that the expected-MSEminimiza-
tion could recover the whole information (both magnitude
and phase of PSF) (see Theorem 1), whereas the prediction-
MSE criterion cannot detect the phase of PSF (see Theorem
2). However, unlike the inaccessible standard MSE/SURE,
the prediction-MSE can be unbiasedly estimated by a statis-
tical substitute (i.e., prediction-SURE), that is accessible in
practice (see Sect. 3). Moreover, if the frequency response of
the PSF is positive with zero phase, the prediction-MSEmin-
imization succeeds in estimating the accurate PSF. Hence,
we consider only zero-phase blur models in this paper. Fortu-
nately,many real-life blurs—linearmotion, out-of-focus, and
atmospheric turbulence blurs—have zero phase, this assump-
tion is rather unrestrictive.

2.2 Error Analysis for the Regularization
Approximation

Note that the exact U (ω) in (8) cannot be used in practice,
since σ 2/Sx (ω) is unknown. It is crucial to find a good reg-
ularization term λR(ω) to approximate σ 2/Sx (ω), i.e.,

UH,λ = HR−1HT(

HR−1HT + λI
)−1

⇐⇒ UH,λ(ω) = |H(ω)|2
|H(ω)|2 + λR(ω)

, (10)

where λ is a regularization parameter. UH,λ is termed as
smoother matrix in model selection problem [14]. Similarly,
we callUH,λ(ω) as smoother filtering. The filterU (ω) in (8)
is called exact smoother filtering. Thus, by the regulariza-
tion approximation (10), we formulate the PSF estimation
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as minimizing ‖UH,λy − H0x‖2 over both H and λ in prac-
tice (for the moment, despite of the unknown H0x). Thus,
the next problem naturally arises: how is the PSF estimation
accuracy, if we use UH,λ (10) instead of exact U (8)?

Since Theorem 2 theoretically guarantees the exact esti-
mation of magnitude |H0(ω)| by using exact smoother
filtering (8), it will serve as a benchmark for evaluating the
error of PSF estimation by the approximation (10). The fol-
lowing proposition provides an error analysis that directly
links the approximation accuracy of σ 2/Sx (ω) to the error
of PSF estimation.

Proposition 1 Considering the minimization of prediction-
MSE of UH,λ:

min
H,λ

‖UH,λy − H0x‖2,

whereUH,λ is defined as (10), the estimation error of |H0(ω)|
satisfies the following inequality

∣
∣
∣|H(ω)|2 − |H0(ω)|2

∣
∣
∣ ≤ C1 · δω + C2, ∀ω, (11)

where C1 and C2 are two constants, δω denotes the approx-

imation error of regularizer:
∣
∣λR(ω) − σ 2

Sx (ω)

∣
∣ ≤ δω for ∀ω.

(11) can be simplified under the following two special cases:

– If λR(ω) = σ 2/Sx (ω), then the constant C1 = 0;
– For non-parametric setting of PSF, the constant C2 = 0.

Proof (upper-bound analysis) From the proof of Theorem
2, we can see that U0 = H0SxHT

0

(

H0SxHT
0 + σ 2I

)−1 is
a global minimizer of the prediction-MSE, which indicates
that ‖Uy − H0x‖2 ≥ ‖U0y − H0x‖2 for any matrix U. By
triangular inequality, we have

‖U0y − H0x‖ ≤ ‖Uy − H0x‖
︸ ︷︷ ︸

p(U)

= ‖Uy − U0y + U0y − H0x‖
≤ ‖Uy − U0y‖ + ‖U0y − H0x‖

︸ ︷︷ ︸

q(U,U0)

.

Here, q(U,U0) is an upper bound of p(U), and satisfies that
q(U0,U0) = p(U0). ByMajorization–Minimization frame-
work [3,24], minimizing p(U) is equivalent to minimizing
the upper bound q(U,U0). Note that the second term of
q(U,U0) is constant, provided that the optimizerU0 is fixed.
Thus, we have

min
U

‖Uy − H0x‖2
︸ ︷︷ ︸

P-MSE

⇐⇒ min
U

p(U) ⇐⇒ min
U

q(U,U0)

⇐⇒ min
U

‖Uy − U0y‖ ⇐⇒ min
U

‖Uy − U0y‖2

whichmeans that the prediction-MSEminimization is essen-
tially matching U to the global optimizer U0.

Considering U as UH,λ defined by (10), by the frequency
representation, we have

‖(U − U0)y‖2 =
∑

ω

∣
∣(U (ω) −U0(ω))Y (ω)

∣
∣2

≤ Y � ·
∑

ω

∣
∣U (ω) −U0(ω)

∣
∣2,

where Y � = maxω |Y (ω)|2, and

U (ω) = |H(ω)|2
|H(ω)|2 + λR(ω)

= V (ω)

V (ω) + 1
with V (ω)

= |H(ω)|2
λR(ω)

≥ 0, ∀ω

U0(ω) = |H0(ω)|2
|H0(ω)|2 + σ 2

Sx (ω)

= V0(ω)

V0(ω) + 1
with V0(ω)

= |H0(ω)|2 Sx (ω)

σ 2 ≥ 0, ∀ω.

Then, by substitution, we have

‖(U − U0)y‖2 ≤ Y � ·
∑

ω

∣
∣U (ω) −U0(ω)

∣
∣2

= Y � ·
∑

ω

(
V (ω)

V (ω) + 1
− V0(ω)

V0(ω) + 1

)2

= Y � ·
∑

ω

(
V (ω) − V0(ω)

(V (ω) + 1) · (V0(ω) + 1)

)2

≤ Y � ·
∑

ω

(

V (ω) − V0(ω)
)2

≤ Y � ·A� ·
∑

ω

(

|H(ω)|2 − |H0(ω)|2 Sx (ω)

σ 2 λR(ω)
)2

,

where A� = maxω

(

λR(ω)
)−1. The second last inequality is

due to the fact that (V (ω) + 1) · (V0(ω) + 1) ≥ 1, ∀ω.
Finally, by Majorization–Minimization again, we obtain

min
U

‖Uy − H0x‖2
︸ ︷︷ ︸

P-MSE

⇐⇒ min
H

∑

ω

(

|H(ω)|2 − |H0(ω)|2 Sx (ω)

σ 2 λR(ω)
)2

︸ ︷︷ ︸

J (H)

(12)

• Non-parametric case For the non-parametric setting of
H(ω), H(ω) has the full degree of freedom. The solution
to (12), i.e., the minimizer of J (H), is obviously
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|H �(ω)|2 = |H0(ω)|2 Sx (ω)

σ 2 λR(ω)

= |H0(ω)|2
(

1 + Sx (ω)

σ 2

(

λR(ω) − σ 2

Sx (ω)
︸ ︷︷ ︸

�1ω

))

, ∀ω,

(13)

where �ω denotes the approximation error of λR(ω) w.r.t.
σ 2/Sx (ω). And the minimum value of J (H) is J �

1 =
J (H �) = 0. Moreover, one can easily verify that H �(ω) is
also the minimizer of

(|H(ω)|2 − |H0(ω)|2λR(ω)
Sx (ω)

σ 2

)2—
each summation term of J (H) for any fixedω. It implies that
not only J (H �) = 0, but each term of J (H �) is exactly zero
as well.

1. Ideally, if λR(ω) = σ 2

Sx (ω)
, such that�1ω = 0, (13) leads

to |H �(ω)| = |H0(ω)|, which coincides with Theorem 2.
2. In practice, we use the regularizer λR(ω) = σ 2

Sx (ω)
, (13)

yields that

∣
∣
∣|H �(ω)|2 − |H0(ω)|2

∣
∣
∣ = |H0(ω)|2 Sx (ω)

σ 2

∣
∣�1ω

∣
∣

≤ max
ω

(

|H0(ω)|2 Sx (ω)

σ 2

)

︸ ︷︷ ︸

C�

·max
ω

∣
∣�1ω

∣
∣

︸ ︷︷ ︸

δω

, ∀ω.

• Parametric case In a parametric setting, H(ω) is deter-
mined by a few parameters s, denoted by Hs(ω). The
minimization problem (12) becomes

min
s

∑

ω

(

|Hs(ω)|2 − |Hs0(ω)|2 Sx (ω)

σ 2 λR(ω)
)2

︸ ︷︷ ︸

J (s)

, (14)

where s0 denotes the true PSF parameter. Let s� denote
the minimizer of J (s).

1. Ideally, if λR(ω) = σ 2

Sx (ω)
, the minimization (14)

becomes

min
s

∑

ω

(

|Hs(ω)|2 − |Hs0(ω)|2
)2

(15)

– If the retrieved Hs(ω) has the same parametric form with
the true Hs0(ω), the minimization (15) leads to s� = s0
and theminimumvalue of J (s) is J �

2 = J (s�) = J (s0) =
0 = J �

1 . It coincides with Theorem 2.
– If the retrieved Hs(ω) and the true Hs0(ω) belong

to different parametric functions (see cross-validation
experiments in Sect. 6.6), due to the limitation of degree
of freedom of Hs(ω) (i.e., the small dimension of para-
meter vector s, compared to the number of frequency

samples ω), (15) does not lead to |Hs� (ω)| = |Hs0(ω)|
for ∀ω and J � = 0. Instead, a small error �2ω should be
allowed

|Hs� (ω)|2 = |Hs0(ω)|2 + �2ω, ∀ω

to guarantee the existence of optimal s�5, and the residual
error is

J �
2 = J (s�) =

∑

ω

|�2ω|2 ≥ max
ω

|�2ω|2 > 0 = J �
1

Finally, we obtain the following inequality:

∣
∣
∣|Hs� (ω)|2 − |Hs0(ω)|2

∣
∣
∣ ≤ max

ω

∣
∣�2(ω)

∣
∣ ≤

√

J �
2 , ∀ω

2. In practice, we use the regularizer λR(ω) = σ 2

Sx (ω)
. No

matter if the retrieved Hs(ω) and the true Hs0(ω) belong
to the same function family, theminimization (14) always
yields

|Hs� (ω)|2 = |H0(ω)|2
(

1 + Sx (ω)

σ 2 �1ω
)

+ �2(ω), ∀ω

and

J �
2 = J (s�) =

∑

ω

|�2ω|2 ≥ max
ω

|�2ω|2 > 0 = J �
1

where a small error �2ω should be allowed for the exis-
tence of optimal s�. Finally, we obtain the following
inequality:

∣
∣
∣|Hs� (ω)|2−|H0(ω)|2

∣
∣
∣=

∣
∣
∣|H0(ω)|2 Sx (ω)

σ 2 �1ω + �2(ω)

∣
∣
∣

≤
∣
∣
∣|H0(ω)|2 Sx (ω)

σ 2 �1ω

∣
∣
∣ +

∣
∣
∣�2(ω)

∣
∣
∣

≤ max
ω

(

|H0(ω)|2 · Sx (ω)

σ 2

)

︸ ︷︷ ︸

C�

·max
ω

|�1ω|
︸ ︷︷ ︸

δω

+max
ω

|�2ω|

≤ C� · δω +
√

J �
2 , ∀ω.

It should be noted that for parametric case with λR(ω) =
σ 2/Sx (ω), the minimum value of J , denoted by J �

2 = J (s�),
is always greater than J �

1 = J (H �)—the minimum value
attained under non-parametric condition. The reason is that
due to the limited degrees of freedom by the PSF parame-
trization, Eq. (13) is by no means satisfied for ∀ω. One can
understand the PSF parametrization as a constraint of the

5 The optimal solution s� may not be unique. The uniqueness of the
solution depends on the parametric form of PSF.
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optimization (14), whereas problem (12) is unconstrained
optimization under non-parametric setting.

Summarizing all the cases leads to the inequality (11),
where either C1 or C2 vanishes for some special cases. 	


Note that Theorem 2 is merely a special case of Propo-
sition 1 under non-parametric condition with λR(ω) =
σ 2/Sx (ω). Proposition 1 dealswithmuchmore general prob-
lem settings: it shows that the smaller the error δω is, themore
accurate the estimate |H(ω)| is. Furthermore, Proposition 1
also reveals the underlying philosophy of the prediction-
MSE minimization: it naturally finds the best approximation
of |H0(ω)|. The inequality (11) always holds, even if the
retrieved H(ω) has a different parametric form from the
underlying H0(ω). See the above proof and cross-validation
experiments in Sect. 6.6.

2.3 Choices of Regularizer R(ω) and the Comparisons

In the preliminary works of [32,33], the authors used a con-
stant λ (i.e. R(ω) = 1) to replace σ 2/Sx (ω) and obtained the
following approximation:

UH,λ(ω) = |H(ω)|2
|H(ω)|2 + λ

. (16)

Note that this simple approximation (16) is not sufficiently
accurate for the frequency-varying term σ 2/Sx (ω). Consider
the basic observation that for natural images with strong low
frequencies and weak high frequencies, σ 2/Sx (ω) increases
as the frequency ω goes up, since the noise content is often
relatively flat with frequency. For this reason, [34] proposed
the following approximation:

UH,λ(ω) = |H(ω)|2
|H(ω)|2 + λω2 , (17)

where R(ω) = ω2. It is desired to have σ 2/Sx (ω) ≈ λω2 for
some λ.

However, both the above approximations cannot cope
with various types of natural images. For example, if the
image contains abundant high-frequency information (e.g.
Noise and Crowd in Fig. 3), Sx (ω) does not drop rapidly at
high frequencies. Consequently, one can observe the slow
varying of the term σ 2/Sx (ω) with ω, which makes a con-
stant λ of (16) to be a sufficiently accurate approximation
of σ 2/Sx (ω), whereas the regularization (17) is not a good
choice. Conversely, if the image, likeBridge andCoco in Fig.
3, is dominantly occupied by homogeneous regionswith very
few edges and simple patterns, σ 2/Sx (ω) will increase very
sharply with the increasing frequency. Thus, σ 2/Sx (ω) can-
not be accurately approximated by (16) or (17) in this case.

Hence, both options of (16) and (17) are not adap-
tive to various types of images, for a consistently good

approximation of exact smoother filtering (8). To avoid the
disadvantage, we now propose the following frequency-
adaptive smoother filtering:

UH,λ = HSyHT(

HSyHT + λI
)−1

⇐⇒ UH,λ(ω) = |H(ω)|2
|H(ω)|2 + λ/Sy(ω)

, (18)

where R−1 = Sy, Sy(ω) = |Y (ω)|2 is the power spectral
density of the observed data y,Y (ω) is the DFT of data
y. Though y is different from the original x, Sy(ω) shows
the similar trend with Sx (ω) along the frequency ω. Thus,
with proper value of parameter λ, λ/Sy(ω)would be a better
approximation of σ 2/Sx (ω) for ∀ω.

According to Proposition 1, we evaluate the approxi-
mation performance of λR(ω) by δω = maxω

∣
∣λR(ω) −

σ 2/Sx (ω)
∣
∣, which can be regarded as 	∞-norm metric. For

fair comparison of the above three choices of R(ω), we opti-
mize the parameter λ by δω-minimization for each choice of
R(ω), i.e.,

λopt = argmin
λ

max
ω

∣
∣λR(ω) − σ 2/Sx (ω)

∣
∣

︸ ︷︷ ︸

δω(λ)

for R(ω) = 1, ω2 and 1/Sy(ω), respectively. Finally, we
compare δω to see which one is the best approximation.

Figure 1 shows the approximations of λoptR(ω), taking
Coco and Noise for example. For a 2-D frequency domain
of R(ω1, ω2) and σ 2/Sx (ω1, ω2), we only show a line with
ω2 = 0, i.e., R(ω1, 0) and σ 2/Sx (ω1, 0) varying with ω1.
The same applies to other figures.

The approximation error δω is reported in Table 1. We can
see that

• The approximation of R(ω) = 1 performs best forNoise,
but worst for Coco;

• On average, the approximation by R(ω) = 1/Sy(ω)

achieves a smallest error δω.

As claimed by Proposition 1, the approximation error δω

determines the value of minimum prediction-MSE and the
error of PSF estimation. We expect the proposed frequency-
adaptive regularizer (18) to obtain more accurate PSF esti-
mate. See Sect. 6.2 for further discussions.

3 Prediction-SURE: An Unbiased Estimate of the
Prediction-MSE

As mentioned above, the oracle prediction-MSE can be
unbiasedly estimated by a statistical substitute—prediction-
SURE. Theorem 3.1 of [34] formulates the prediction-SURE
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Fig. 1 Approximations of
σ 2/Sx (ω) using λoptR(ω),
where R(ω) = 1, ω2 and
1/Sy(ω)

(1) Coco (2) Noise
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Table 1 The approximation errors δω of λR(ω) to σ 2/Sx (ω)

Approximations λ (16) λω2 (17) λ/Sy(ω) (18)

Coco 15.44 15.26 6.26

Noise 27.49 31.58 29.90

for the general function f(y). Let us restate it here as the fol-
lowing lemma.

Lemma 1 Considering the linear model (1), the following
random variable:

ε = 1

N

∥
∥f(y) − y

∥
∥2 + 2σ 2

N
divy

(

f(y)
) − σ 2

is an unbiased estimator of the PMSE, i.e., E{ε} =
1
N E

{‖f(y) − H0x‖2
}

.

See Appendix B in [34] for the complete proof. We can
see that unlike the standard SURE (3), the prediction-SURE
depends on only the measurements y, and thus, is accessible
in practice.

Now, we consider the function f(·) as the smoother matrix
UH,λ given as (16)–(18).

• if UH,λ is given as (16) or (17), which is independent of
data y, then, divy

(

UH,λy
) = Tr(UH,λ) as we derived in

[34].
• if UH,λ is given as (18), then, divy

(

UH,λy
) = Tr(UH,λ),

due to the dependence of UH,λ on y. The following the-
orem formulates the prediction-SURE for this particular
case.

Theorem 3 (one-dimensional)
Consider the linear model (1) with one-dimensional data

x and y. Given the linear smoother filteringUH,λ as (18), the
following random variable:

ε = 1

N

∥
∥UH,λy − y

∥
∥2 + 2σ 2

N
Tr

(

UH,λ + QH,λ

) − σ 2

is an unbiased estimator of the P-MSE (7). By the assump-
tions of this paper (see the end of Sect. 1), the matrix QH,λ

is diagonalized by DFT with the following frequency coeffi-
cients6:

QH,λ(ω) = |H(ω)|2λ
(

|H(ω)|2 + λ
|Y (ω)|2

)2 · |Y (ω)|2

See Appendix 1 for the proof. The following corollary,
which is naturally derived from Theorem 3, extends one-
dimensional to two-dimensional case.

Corollary 1 (two-dimensional) Consider the linear model
(1) with two-dimensional data x and y. Given the linear
smoother filtering UH,λ as

UH,λ(ω1, ω2) = |H(ω1, ω2)|2
|H(ω1, ω2)|2 + λ/Sy(ω1, ω2)

,

the following random variable:

ε = 1

N

∥
∥UH,λy − y

∥
∥2 + 2σ 2

N
Tr

(

UH,λ + QH,λ

) − σ 2

is an unbiased estimator of the P-MSE (7), i.e., E{ε} =
E

{

P-MSE
}

. The frequency representation of matrix QH,λ is

QH,λ(ω1, ω2) = |H(ω1, ω2)|2λ
(

|H(ω1, ω2)|2 + λ
|Y (ω1,ω2)|2

)2 · |Y (ω1, ω2)|2

See Appendix 2 for the proof, most of which is based on
the proof of Theorem 3. This two-dimensional result can be
readily used in this paper to compute the prediction-SURE
for image processing.

6 The practical computation can be fully performed in Fourier domain.
The introduction of matrixQ is for sake of concise expression by linear
algebra language.
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4 A Variant of Prediction-SURE: Free of
Estimation of Noise Variance

Now, we have established the prediction-SURE framework:
the PSF is estimated by minimizing the prediction-SURE
w.r.t. H and λ. However, it requires the knowledge of noise
variance σ 2. In many scenarios, the prediction-SURE cannot
be readily used, when σ 2 is unknown.

4.1 Derivation of a SURE-Variant

Now, we propose a variant of the prediction-SURE, which
will be independent of σ 2. First, we consider U as the exact
smoother filtering (8), and denote the linear estimate by μ̂ =
Uy. Then, by Lemma 1, the prediction-SURE of μ̂ is

SURE(μ̂) = 1

N

∥
∥Uy − y

∥
∥2 + 2σ 2

N
Tr(U) − σ 2

Instead of the estimate μ̂, we consider the following linear
combination

μ = αy + (1 − α)μ̂ = αy + (1 − α)Uy

= (

αI + (1 − α)U
)

︸ ︷︷ ︸

U

y

weighted by a parameterα. Then, similar to μ̂, the prediction-
SURE of the estimate μ is

SURE(μ) = 1

N

∥
∥Uy − y

∥
∥2 + 2σ 2

N
Tr(U) − σ 2

To make SURE(μ) be independent of σ 2, let Tr(U) = 0,
which yields thatα = − Tr(U)

N−Tr(U)
. Thus, thematrix associated

with μ, i.e., U, has trace 0. The estimate μ, therefore, is
called nil-trace linear estimate. Thus, the prediction-SURE
procedure on this estimate becomes

SURE(μ) = 1

N

∥
∥Uy − y

∥
∥
2 − σ 2

= 1

N

∥
∥(1 − α)(U − I)y

∥
∥
2 − σ 2

= 1

N
(1 − α)2

∥
∥(U − I)y

∥
∥2 − σ 2

= N

(N − Tr(U)2

∥
∥(I − U)y

∥
∥
2 − σ 2

= N
∥
∥(I − U)y

∥
∥2

(Tr(I − U))2
− σ 2

= N

∥
∥My

∥
∥2

(Tr(M))2
︸ ︷︷ ︸

ε

−σ 2 (denoting I − U = M).

(19)

Thus, we obtain a new objective functional ε, the minimiza-
tion of which is equivalent to that of the prediction-SURE of
μ7. Since ε is derived from theSURE, restricted to a sub-class
of linear estimate, ε is called SURE-variant. The following
theorem verifies the expectation of ε as a valid criterion for
PSF estimation.

Theorem 4 If the equality

M = I − U = σ 2(HSxHT + σ 2I
)−1 (20)

holds, minimization of E{ε} (19) overH yields the exact fre-
quency magnitude of PSF: |H(ω)| = |H0(ω)|.
Proof First, we perform the minimization of ε (19) over any
matrixM ∈ R

N×N . Substituting y = H0x + b into (19), we
develop ε as

ε = 1
(

Tr(M)
)2

∥
∥M(H0x + b)

∥
∥2

= 1
(

Tr(M)
)2

(

Tr
(

MH0xxTHT
0M

T) + Tr
(

MbbTMT)

+2bTMH0x
)

.

The expected value of ε is

E{ε} = 1
(

Tr(M)
)2

(

Tr
(

MH0E{xxT}HT
0M

T)

+Tr
(

ME{bbT}MT))

= 1
(

Tr(M)
)2

(

Tr
(

MH0SxHT
0M

T) + σ 2Tr
(

MMT))

= 1
(

Tr(M)
)2 Tr

(

M(H0SxHT
0 + σ 2I

︸ ︷︷ ︸

A

)MT
)

.

The problem becomes

min
M

Tr
(

MAMT
)

(

Tr(M)
)2 ,

whereA � 0. The optimization is equivalent to the following
problem:

min
M

Tr
(

MAMT)

s.t. Tr(M) = 1. (21)

Lagrangian method formulates it as

min
M

Tr
(

MAMT) − 2β
(

Tr(M) − 1
)

︸ ︷︷ ︸

J (M)

,

7 The last term σ 2, though unknown, is a constant irrelevant to the
minimization procedure.
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where β is a Lagrangian multiplier. By variation method, we
have

δ J = J (M + δM) − J (M)

= 2Tr(δMAMT) − 2βTr(δM) + O(

Tr(δM)
)

= Tr
(

δM
(

2AMT − 2βI
)) + O(

Tr(δM)
)

.

Hence, the solution of M should satisfy

2AMT − 2βI = 0 �⇒ M = βA−T.

Substituting A = H0SxHT
0 + σ 2I, we obtain

M = β
(

H0SxHT
0 + σ 2I

)−T = β
(

H0SxHT
0 + σ 2I

)−1
,

where β can be any constant for the moment.
On the other hand, if we restrict the linear processing to

M = σ 2
(

HSxHT + σ 2I
)−1, then, we have

σ 2(HSxHT + σ 2I
)−1 = β

(

H0SxHT
0 + σ 2I

)−1

which yields HSxHT = H0SxHT
0 and the constant β = σ 2.

In frequency domain, it is equivalent to |H(ω)| = |H0(ω)|.
	


The proof reveals that the SURE-variant minimization
is essentially equivalent to matching the filtering M(ω) =
σ 2(|H(ω)|2Sx (ω) + σ 2)−1 in frequency domain. Recalling
the definition of exact smoother filtering as Eq. (8), we have
a connection that M(ω) +U (ω) = 1 for ∀ω orM + U = I.
Hence, we call M(ω) as complementary smoother filtering.

Theorem 4 shows that incorporating exact complemen-
tary smoother filtering (20), minimization of SURE-variant
yields the exact estimate of PSF magnitude. Compared to
the traditional SURE, a key advantage of the SURE-variant
is that ε does not depend on noise variance σ 2: we do not
need to estimate σ 2 in advance.

4.2 Error Analysis for the Approximation of
Complementary Smoother Filtering

By analogy to Sect. 2.2, due to the unknown σ 2/Sx (ω), we
practically use the following regularization

MH,λ = λ
(

HR−1HT + λI
)−1 ⇐⇒ MH,λ(ω)

= λR(ω)

|H(ω)|2 + λR(ω)
(22)

to approximate the exact one (20). Hence, we applyMH,λ in
the SURE-variant ε, instead of the exact but inaccessible M
(20). Thus, PSF estimation is formulated as minimization of
ε w.r.t. H and λ.

Similar to Proposition 1, the following proposition pro-
vides a close link between the approximation error of
regularization and PSF estimation error.

Proposition 2 Considering the minimization of SURE-
variant of MH,λ:

min
H,λ

∥
∥MH,λy

∥
∥2

(

Tr
(

MH,λ

))2 ,

whereMH,λ is definedas (22), the estimation error of |H0(ω)|
satisfies the following inequality

∣
∣
∣|H(ω)|2 − |H0(ω)|2

∣
∣
∣ ≤ C1 · δω + C2,

where C1 and C2 are two constants, δω denotes the approx-

imation error of regularizer:
∣
∣λR(ω) − σ 2

Sx (ω)

∣
∣ ≤ δω for ∀ω.

This inequality can be simplified under the following two
special cases:

– If λR(ω) = σ 2/Sx (ω), then the constant C1 = 0;
– For non-parametric setting of PSF, the constant C2 = 0.

Proof (upper-bound analysis) From the proof of Theorem 4,
the minimization of expected SURE-variant is finally equiv-
alent to

min
M

Tr
(

MAMT) − 2σ 2(Tr(M) − 1
)

which can be expressed in frequency domain (ignoring the
last constant):

min
M

∑

ω

M2(ω)
( |H0(ω)|2Sx (ω) + σ 2
︸ ︷︷ ︸

A(ω)

) − 2σ 2 · M(ω).

It is equivalent to

min
M

∑

ω

M2(ω)
1

M0(ω)
− 2M(ω),

where M0(ω) = (|H0(ω)|2 Sx (ω)

σ 2 + 1
)−1. Then, the mini-

mization problem becomes (ignoring the last constant)

min
M

∑

ω

1

M0(ω)

(

M(ω) − M0(ω)
)2

.

Since M0(ω) ≤ 1 for ∀ω, we have

∑

ω

1

M0(ω)

(

M(ω) − M0(ω)
)2

︸ ︷︷ ︸

p(M)

≤
∑

ω

(

M(ω) − M0(ω)
)2

︸ ︷︷ ︸

q(M,M0)
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which indicates that q(M, M0) is an upper bound of
p(M), and p(M0) = q(M0, M0) = 0. By Majorization–
Minimization, we establish the following equivalence

Minimizing SURE-variant ⇐⇒
min
M

∑

ω

(

M(ω) − M0(ω)
)2

Considering M(ω) given by (22), i.e., M(ω) = (|H(ω)|2
1

λR(ω)
+ 1

)−1. By the substitution, denoting V0(ω) =
|H0(ω)|2 Sx (ω)

σ 2 and V (ω) = |H(ω)|2 1
λR(ω)

, we have

∑

ω

(

M(ω) − M0(ω)
)2 =

∑

ω

(
1

V (ω) + 1
− 1

V0(ω) + 1

)2

=
∑

ω

(
V (ω) − V0(ω)

(V (ω) + 1) · (V0(ω) + 1)

)2

≤
∑

ω

(

V (ω) − V0(ω)
)2

≤ A� ·
∑

ω

(

|H(ω)|2 − |H0(ω)|2 Sx (ω)

σ 2 λR(ω)
)2

,

where A� = maxω(λR(ω))−1. The second last inequality
is due to the fact that (V (ω) + 1) · (V0(ω) + 1) ≥ 1,∀ω.
Finally, by Majorization–Minimization again, the SURE-
variant minimization is finally equivalent to

min
H

∑

ω

(

|H(ω)|2 − |H0(ω)|2 Sx (ω)

σ 2 λR(ω)
)2

.

Now,we are solving exactly the sameproblemwithPropo-
sition 1 (see Eq. (12)). Refer to the proof of Proposition 1
to complete the discussion of all aspects. 	


Similar to the relation between Theorem 1 and Proposit-
ion 1, it is noted that Theorem 4 stands for a special case of
Proposition 2 under non-parametric condition with λR(ω) =
σ 2/Sx (ω). Proposition 2 covers much more general problem
settings and draws the same conclusion with Proposition 1.

Similar to (16)–(18), the regularizer R(ω) can be selected
as 1, ω2 or 1/Sy(ω). Section 2.3 has demonstrated that the
following frequency-adaptive regularizer:

MH,λ = λ
(

HSyHT + λI
)−1 ⇐⇒ MH,λ(ω)

= λ

|H(ω)|2Sy(ω) + λ
(23)

is superior to other choices in terms of approximation accu-
racy.

5 SURE-Type Framework

5.1 A Unified Analysis of Statistical Reliability

Theorems 2 and 4 verified expected prediction-MSE and
expected SURE-variant as valid criteria for PSF estimation.
However, in practice, we are minimizing prediction-SURE
andSURE-variant, rather than their expected values. It is nec-
essary to analyze the discrepancy between a random variable
(e.g., prediction-SURE or SURE-variant) and its expectation
(e.g., expected prediction-MSE and expected SURE-variant)
for more rigorous treatment.

Let ξ̂ denote a random variable, and ξ denote its
expectation ξ = E{̂ξ}. By Theorems 2 and 4, if exact
(complimentary) smoother filtering is applied, an oracle
is supposed to determine the exact estimate of H0, i.e.,
H0 = argminH ξ(H), and correspondingly, we have H� =
argminH ξ̂ (H) in practice.

More formally, the associated oracle inequality states that
with high probability ξ(H�) ≤ ξ(H0) + γ . That is to say for
∀α ∈ (0, 1), there is a positive number γ , s.t.

P
(

ξ(H�) − ξ(H0) ≥ γ
) ≤ α

Notice that ξ̂ (H�) ≤ ξ̂ (H0), we can write

P
(

ξ(H�) − ξ(H0) ≥ γ
) ≤ P

(∣
∣̂ξ(H0) − ξ(H0)

∣
∣ ≥ γ

2

)

+P

(∣
∣̂ξ(H�) − ξ(H�)

∣
∣ ≥ γ

2

)

≤
∑

H

P

(∣
∣̂ξ(H) − ξ(H)

∣
∣ ≥ γ

2

)

considering all the convolution matrix H. Then, by Cheby-
shev’s inequality, we obtain

P
(

ξ(H�) − ξ(H0) ≥ γ
) ≤

∑

H

4

γ 2E

{∣
∣̂ξ(H) − ξ(H)

∣
∣
2
}

= 4

γ 2

∑

H

R(

ξ̂ (H)
)

,

tentative
H
λ

computeUH,λ (18)
MH,λ (23)

compute (H, λ) (24)
compute (H, λ) (25)

perform non-blind deconvolution with estimated H(ω)

to be estimated (comp.) smoother
filtering

minimization of
prediction-SURE/variant

Stage 1: PSF estimation (focus of this work)

Stage 2: deconvolution

Fig. 2 The flowchart of PSF estimation: joint minimization of the
SURE-type functionals over H and λ, as shown in (24) and (25)
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Fig. 3 Original images. a Bridge 512 × 512; b Coco 256 × 256; c Crowd 512 × 512; d Noise 256 × 256

(1) curve of prediction-SURE (2) curve of SURE-variant
Coco
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Fig. 4 The prediction-SURE/SURE-variant minimization with exact (complementary) smoother filtering underGaussian kernel:Coco andNoise,
BSNR=40dB.

where R is the statistical risk of a quadratic loss function

R(

ξ̂ (H)
) := E

{∣
∣̂ξ(H) − ξ(H)

∣
∣2

}

.

The variance of SURE, i.e., R, has been discussed in
[18,25,30]. Especially, [18] proposed an upper bound of the
variance of SURE w.r.t. the expectation. Generally, the vari-
ance of SURE is inversely proportional to the sample number
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(1) R(ω) = λ in (16) (2) R(ω) = ω2 in (17) (3) R(ω) = 1/Sy(ω) in (18)
approximations of smoother filtering
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Fig. 5 The prediction-SURE minimization under Gaussian kernel: Coco, BSNR=20dB

(1) R(ω) = λ in (16) (2) R(ω) = ω2 in (17) (3) R(ω) = 1/Sy(ω) in (18)
approximations of complementary smoother filtering
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Fig. 6 The SURE-variant minimization under Gaussian kernel: Coco, BSNR=20dB
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(1) R(ω) = λ in (16) (2) R(ω) = ω2 in (17) (3) R(ω) = 1/Sy(ω) in (18)
approximations of smoother filtering
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Fig. 7 The prediction-SURE minimization under Gaussian kernel: Noise, BSNR=40dB

(1) R(ω) = λ in (16) (2) R(ω) = ω2 in (17) (3) R(ω) = 1/Sy(ω) in (18)
approximations of complementary smoother filtering
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Fig. 8 The SURE-variant minimization under Gaussian kernel: Noise, BSNR=40dB
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(1) min. of prediction-SURE (2) min. of SURE-variant
Gaussian kernel
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Fig. 9 Linear interpolation of the function between s and log10 λ, under Gaussian and jinc kernels: House, BSNR=40dB

N . In image processing, the variance is very small due to the
large number of pixels [18,25].

5.2 Short Summary

As summary, we formulate the PSF estimation as

• minimizing the prediction-SURE over bothH and λ, i.e.,

min
H,λ

1

N

∥
∥UH,λy − y

∥
∥2+ 2σ 2

N
Tr

(

UH,λ + QH,λ

)− σ 2

︸ ︷︷ ︸

prediction-SURE: ε(H,λ)

(24)

• minimizing the SURE-variant over both H abd λ

min
H,λ

∥
∥MH,λy

∥
∥
2

(Tr(MH,λ))2
︸ ︷︷ ︸

SURE-variant: ε(H,λ)

(25)

Here, UH,λ and MH,λ are given by (18) and (23),
respectively.QH,λ is specified in Theorem 3. The prediction-
SURE/SURE-variant framework is summarized as Fig. 2. In
addition, if the PSF is represented by a number of parameters
s, the minimizations become with respect to s and λ.

By Propositions 1 and 2, the solution H(ω) to (24) or
(25) satisfies (11), which implies that the estimation error of
|H0(ω)| is upper bounded by δω—the approximation error
of λ/Sy(ω).

By Theorems 2 and 4, the minimization of prediction-
SURE or SURE-variant is essentially matching of exact
(complementary) smoother filtering. Also notice that the
matching of the exact complementary smoother filtering
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M0(ω) (minimizing SURE-variant) is equivalent to match-
ing of the exact smoother filtering U0(ω) (minimizing
prediction-SURE), since M(ω) = M0(ω) implies 1 −
M(ω) = 1 − M0(ω), i.e., U (ω) = U0(ω) for ∀ω.

6 Experimental Results and Discussions

6.1 Experimental Setting

The prediction-SURE/SURE-variant framework is espe-
cially applicable for parametric PSF estimation, where the
PSF is given in a specific parametric form with a small
number of unknown parameters. Now, we exemplify this
approach with two typical parametrized PSF:

• Gaussian kernel, with an unknown parameter—blur size
s:

h(i; s) = C · exp
(

− i21 + i22
2s2

)

(26)

• jinc function8, with an unknown scaling factor t :

h(i; t) = C ·
[
2J1(r/t)

r/t

]2

, (27)

where J1(·) is first-order Bessel function of first kind, the
radius r =

√

i21 + i22 . The constant C in (26) and (27) is

a normalization factor, s.t.
∑

i h(i) = 1.

Gaussian kernel has been widely used in many applica-
tions, see [26,34,35] for example. The jinc function is often
used to describe optical diffraction-limited condition, where
the parameter t is related to wave number and aperture diam-
eter of optical imaging system [5].

Here, we stress that the proposed SURE-type criteria are
also applicable for other blur kernels, not necessarily circu-
larly symmetric kernels, for example, [33] estimated the blur
length anddirection of linearmotion, based on the prediction-
SURE principle.

We perform the following synthetic experiments: the test
images displayed in Fig. 3 are blurred by Gaussian kernel
(26) with the true s0 = 2.0 and jinc function (27) with the
true t0 = 2.0, respectively, and subsequently corrupted by
white Gaussian noise corresponding to BSNR=40, 30, 20,
10 dB9.

8 The terminology jinc is due to the structural similarity to sinc function
[6].
9 BSNR (blurr signal-to-noise ratio) is defined as BSNR =
10 log10

( ‖H0x−mean(H0x)‖2
Nσ 2

)

[24,34].

6.2 Comparisons Between Different Regularization
Terms

First, Fig. 4 shows that if we use the exact (complementary)
smoother filtering (8) or (20), the PSF is exactly estimated
forGaussian kernel, and for jinc kernel (omitted here). Thus,
Theorem2 andTheorem4have been experimentally verified.

Due to the unknown σ 2/Sx (ω) in the exact (comple-
mentary) smoother filtering, Sects. 2 and 4 discussed the
various approximations by the regularization term λR(ω) for
R(ω) = 1, ω2, or 1/Sy(ω). Now, we are going to show the
experimental results and compare the three regularizers.

For Coco image, Fig. 5 shows the minimizations of
prediction-SURE and the approximations of smoother filter-
ing. Figure 6 shows the minimizations of SURE-variant and
the approximations of complementary smoother filtering.We
can see that for this simple image, the rapidly changing spec-
trum σ 2/Sx (ω) cannot be well approximated by a constant λ,
whereas the choice R(ω) = ω2 or 1/Sy(ω) is more suitable.
Hence, the resulted estimations of (17) and (18) are more
accurate than that of (16).

Figures 7 and 8 shows the counter-example of Noise
image. For this complicated image without significant
decrease at high frequencies, the slowly varying spectrum
σ 2/Sx (ω) is perfectly approximated by a constant λ (16):
it produces more accurate results than using R(ω) = ω2 or
1/Sy(ω).

Overall, Figs. 4, 5, 6, 7, and 8 show that the follow-
ing three indicators are closely linked: minimum value of
prediction-SURE/SURE-variant, approximation accuracy of
(complementary) smoother filtering, and PSF estimation
accuracy. Fig. 4 shows the smallest value of minimum
prediction-SURE/SURE-variant, as it uses exact (comple-
mentary) smoother filtering to obtain the exact PSF estimate.
For different regularizers, the smaller value of minimum
prediction-SURE/SURE-variant implies the better approx-
imation of (complementary) smoother filtering and the more
accurate estimate of PSF. From the results, we can observe
that the proposed adaptive regularizer (18) yields consis-
tently better PSF estimations for very different types of
images.

6.3 An Efficient Algorithm for the Minimizations (24)
and (25)

Considering the prediction-SURE/SURE-variant minimiza-
tion over two scalar variables (PSF parameter s and regu-
larization parameter λ), the most straightforward way is to
perform exhaustive search over all the possible values of s
and λ in a certain range. Numerically, if we take 100 discrete
points for s and λ to process the image, the exhaustive search
requires 100×100 = 104 times of computing the SURE-like
functional.
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(1) curve of prediction-SURE (2) approx. of smoother filtering
Gaussian kernel
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Fig. 10 The prediction-SURE minimization under Gaussian and jinc kernels: Coco, BSNR=40dB

The exhaustive search is essentially equivalent to what
follows: for each fixed s, obtain the corresponding optimal λ
by minimizing the SURE-type estimate, and then, insert the
functionλ = λ(s) into the functional. Thus, theminimization
has to be performed over only one variable s. Experimentally,
we found an approximate piecewise linear relation between
the logarithm of λ and the associated optimal blur size s.
Thus, it is reasonable to perform a linear interpolation of the
function s = s(log10 λ) over very few sampling points.

We show the shape of this function (see the dashed
curves) and its linear interpolation (see the navy blur
curve) in Fig. 9 for the Gaussian and jinc kernels. We can
observe that the linear interpolation over very few sampling
points suffices to approximate the function between s and
− log10 λ. The high approximation accuracy enables us to
develop a considerablymore efficient algorithm than exhaus-
tive search (see Algorithm 1). Compared to the exhaustive

search, Algorithm 1 requires only 5 × 100 + 100 = 600
computations.

Algorithm 1 :Algorithm by approximating the function λ =
λ(s)
Input: ε(s, λ) or ε(s, λ): objective function given as (24) or (25);
Output: optimal λ and s
1: take five sample-values sk = 1.0, 1.5, 2.0, 2.5, 3.0 for k =

1, 2, ..., 5;
2: for each sk , find the optimal λk corresponding to the minimum ε or

ε:

min
λk

ε(sk , λk) or min
λk

ε(sk , λk)

3: use linear interpolation to establish λ = λ(s), based on the five pairs
(sk , λk);

4: incorporate λ = λ(s) into ε(s, λ) or ε(s, λ), andminimize ε(s, λ(s))
or ε(s, λ(s)) over s.
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(1) curve of SURE-variant (2) approx. of comp. smoother filtering
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Fig. 11 The SURE-variant minimization under Gaussian and jinc kernels: Coco, BSNR=40dB

Finally, we would like to note that thanks to the quadratic
nature, the SURE-type functionals can be directly computed
in the Fourier domain: there is no need to transform the
Fourier coefficients back to the image domain. Thus, the
computational complexity is further greatly reduced.

6.4 Experimental Results of Parametric PSF
Estimation

In this part, we present the minimizations of the prediction-
SURE (24) and the SURE-variant (25), using the proposed
adaptive regularizer (18).

Taking Coco and BSNR = 40 dB for example, Fig. 10
shows the estimated s and t by the prediction-SURE mini-
mization, and the approximations of smoother filtering, for
both Gaussian and jinc kernels. We can see that:

– the retrieved s = 2.04 and t = 2.00 are very close to true
value 2.0, as stated in Theorem 2;

– the prediction-SURE is a reliable estimate of prediction-
MSE, as stated in Theorem 3;

– the retrieved s and t , with the optimal λ match the exact
smoother filtering, where the red dashed curve denotes
exact U0(ω), the navy blue curve denotes approximated
UH,λ(ω).

Figure 11 shows the estimated s and t by theSURE-variant
minimization, and the approximations of complementary
smoother filtering, for both Gaussian and jinc kernels. We
can draw the same conclusions as Fig. 10. Theorem 4 has
now been verified by this experiment.

Tables 2 and 3 report the complete estimation results
by the proposed prediction-SURE (denoted by ‘→(24)’ in
tables) andSURE-variantminimization (denoted by ‘→(25)’
in tables) under various noise levels, and present the com-
parisons with other state-of-the-art methods, including GCV
[27], kurtosis [17], and DL1C [10]. To emphasize the neces-
sity of the frequency-adaptive regularizer (18), we also
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Table 2 The estimated
parameter s of Gaussian

Image Bridge Coco Crowd Noise

BSNR 30 20 10 30 20 10 30 20 10 30 20 10

GCV 2.15 2.15 2.23 2.09 2.08 2.15 1.85 1.82 1.77 1.84 1.77 1.71

Kurtosis 1.95 1.94 1.90 1.92 2.07 2.11 1.96 1.90 1.92 1.84 1.92 1.95

DL1C 2.40 2.55 2.73 2.33 2.55 2.70 1.91 1.87 1.83 1.82 1.89 1.94

(16) 2.45 2.52 2.64 2.43 2.54 2.63 2.30 2.45 2.67 1.99 2.00 1.99

(17) 2.08 2.15 2.23 2.11 2.09 2.11 2.05 2.10 2.13 1.90 1.87 1.84

→ (24) 1.97 1.98 2.02 2.03 1.96 1.94 1.98 2.02 2.05 1.93 1.94 1.96

→ (25) 1.98 2.02 2.04 2.04 1.98 2.02 1.98 1.98 2.02 1.94 1.94 1.94

Table 3 The estimated
parameter t of jinc

Image Bridge Coco Crowd Noise

BSNR 30 20 10 30 20 10 30 20 10 30 20 10

GCV 1.94 1.94 1.95 1.87 1.89 1.92 1.77 1.82 1.89 1.89 1.91 1.96

Kurtosis 1.80 1.83 1.88 1.74 1.90 1.95 1.85 1.89 1.94 1.81 1.90 1.97

DL1C 2.04 2.18 2.24 2.06 2.07 2.10 1.90 1.87 1.81 1.84 1.89 1.94

(16) 2.11 2.20 2.31 2.15 2.31 2.46 2.05 2.13 2.11 2.00 1.99 2.00

(17) 2.03 2.09 2.12 2.05 2.12 2.21 2.00 2.02 2.05 2.01 1.98 1.98

→ (24) 1.95 2.03 2.05 2.01 2.02 2.04 1.97 1.98 2.01 2.01 1.99 1.98

→ (25) 1.98 2.05 2.05 2.02 2.03 2.04 2.00 2.00 2.00 2.02 1.98 1.98

Table 4 PSNR comparison
(Gaussian kernel with true
s0 = 2.0)

Image Bridge Coco Crowd

BSNR 30 20 10 30 20 10 30 20 10

GCV 33.15 32.26 30.85 33.15 31.90 30.16 21.33 20.30 18.94

Kurtosis 33.88 32.50 30.95 33.29 31.91 30.23 21.72 20.47 19.09

DL1C 27.32 27.12 27.62 29.15 26.22 26.42 21.57 20.41 19.01

(16) 26.05 27.61 28.47 26.79 26.39 27.10 19.10 17.86 16.99

(17) 33.86 32.26 30.85 32.98 31.89 30.23 21.75 20.58 19.14

→ (24) 33.96 32.55 31.07 33.46 31.95 30.25 21.86 20.62 19.16

→ (25) 33.99 32.57 31.07 33.43 31.97 30.30 21.86 20.60 19.15

NBD 34.02 32.57 31.07 33.49 31.99 30.35 21.89 20.62 19.16

Table 5 PSNR comparison
(jinc kernel with true t0 = 2.0)

Image Bridge Coco Crowd

BSNR 30 20 10 30 20 10 30 20 10

GCV 31.34 31.01 30.26 30.80 30.21 28.88 19.00 18.84 18.16

Kurtosis 31.04 30.78 30.21 30.05 30.20 28.88 19.24 18.96 18.21

DL1C 31.44 30.35 29.98 31.15 30.32 28.91 19.37 18.93 18.08

(16) 30.75 30.11 29.71 28.92 27.10 26.94 19.50 18.94 18.16

(17) 31.43 31.02 30.23 31.20 30.26 28.80 19.62 19.16 18.27

→ (24) 31.39 31.12 30.27 31.31 30.33 28.91 19.55 19.12 18.26

→ (25) 31.47 31.12 30.27 31.30 30.32 28.91 19.62 19.14 18.25

NBD 31.50 31.12 30.28 31.31 30.34 28.82 19.62 19.16 18.28
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Fig. 12 Top-left jinc-blurred
image Bridge (true t0 = 3.0,
BSNR=20dB); ‘exactly
restored’ is the non-blind
deconvolution with t0 = 3.0.
The estimated t by GCV, (16),
(17), and (18) are 2.83, 3.45,
3.22, and 3.04, respectively

observed image exactly restored GCV
PSNR=27.04dB PSNR=29.66dB PSNR=29.58dB

R(ω) = 1 R(ω) = ω2 R(ω) = 1/Sy(ω)
PSNR=27.84dB PSNR=29.24dB PSNR=29.66dB

(1) min. of prediction-SURE (2) min. of SURE-variant (3) approximation

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
0.0110

0.0115

0.0120

0.0125

blur size s of Gaussian kernel

 prediction-MSE
 prediction-SURE

1.8 2.1 2.4 2.7 3.0 3.3 3.6
2.77E-006

2.77E-006

2.77E-006

2.78E-006

blur size s of Gaussian kernel

 SURE-variant

-30 -20 -10 0 10 20 30

0.000

0.005

0.010

0.015

0.020
 true jinc
 retrieved Gaussian

estimated s = 2.93

estimated s = 2.96

Fig. 13 The prediction-SURE/SURE-variant minimization under jinc function with t0 = 2.0 as the true blur: Crowd, BSNR=40dB

Fig. 14 Left jinc-blurred image
Crowd (BSNR=30dB); Middle
Deconvolution by exact jinc
function with t0 = 2.0; Right
Deconvolution by the retrieved
Gaussian PSF with s = 2.93

observed image exactly restored Gaussian restored
PSNR=16.77dB PSNR=19.62dB PSNR=18.64dB
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(1) min. of prediction-SURE (2) min. of SURE-variant (3) approximation

1.0 1.1 1.2 1.3 1.4 1.5
0.027

0.028

0.029

0.030

0.031

0.032

scaling factor t of jinc function

 prediction-MSE
 prediction-SURE

1.0 1.1 1.2 1.3 1.4 1.5
3.31E-006

3.32E-006

3.33E-006

3.34E-006

3.35E-006

3.36E-006

3.37E-006

3.38E-006

blur size t of jinc kernel

 SURE-variant

-15 -10 -5 0 5 10 15

0.00

0.01

0.02

0.03

0.04

0.05  true Gaussian
 retrieved jinc

estimated s = 1.30 estimated s = 1.32

Fig. 15 The prediction-SURE/SURE-variant minimization under Gaussian function with s0 = 2.0 as the true blur: Coco, BSNR=40dB

Fig. 16 Left Gaussian-blurred
image Coco (BSNR=30dB);
Middle Deconvolution by exact
Gaussian function with
s0 = 2.0; Right Deconvolution
by the retrieved jinc kernel with
s = 1.30

observed image exactly restored Gaussian restored
PSNR=28.81dB PSNR=33.49dB PSNR=32.25dB

provide the results using the previous two choices (16) and
(17) for comparison.We evaluate the estimation performance
by the error e = |s − s0|, and highlight the best results by
boldface. We can see that

– Based on the above discussions, there is no surprise that
a constant λ as the regularizer in (16) would give the best
estimate for Noise image.

– Using R(ω) = 1 or ω2, the estimated parameters often
tend to be less accurate under higher noise level (see Fig.
4 for example), whereas R(ω) = 1/Sy(ω) yields much
more consistent estimates for various noise levels.

Overall, the estimated parameters by R(ω) = 1/Sy(ω)

are very close to the true values s0 and t0, and outperforms
the other competitors in average for natural images.

6.5 Influence of Accuracy of PSF Estimation upon
Deconvolution Performance

As emphasized above, we separate the PSF estimation and
deconvolution. It is important to evaluate the influence of the
PSF accuracy upon the deconvolution performance. For fair
comparisons in this part, with the estimated PSF by various

methods, we always perform the same BM3D deconvolution
algorithm [11]. Thus, the deconvolution quality completely
depends on the PSF estimation. We evaluate the deconvo-
lution performance in terms of peak signal-to-noise ratio
(PSNR):

PSNR = 10 log10

(
2552

‖̂x − x‖2/N
)

,

where x̂ is the image deconvolved using the estimated PSF
parameters.

Tables 4 and 5 show the deconvolution results and com-
parisons, where the best PSNR results within a 0.1 dBmargin
are highlighted. We can see that the estimated blur kernels
by the proposed methods achieve better deconvolution per-
formance. Moreover, in most cases, our blind deconvolution
achieves a PSNR gain that is within 0.2 dB of the gain of the
non-blind algorithm [11] (reported in italic number of ‘NBD’
rows in Tables 4 and 5, where the PSF is exactly known). Fig-
ure 12 shows a visual example of a severely blurring case,
where the estimated blur size t = 3.04 by the SURE-variant
minimization. This is very similar to the result of prediction-
SURE, and thus, we omit it here.
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observed Fruit min. of prediction-SURE

4.2 4.4 4.6 4.8 5.0 5.2

0.0524

0.0526

0.0528

0.0530

0.0532

0.0534

0.0536

blur size s of Gaussian kernel

 prediction-SURE

restored Fruit
min. of SURE-variant

4.4 4.6 4.8 5.0 5.2

3.85E-006

3.85E-006

3.85E-006

blur size s of Gaussian kernel

 SURE-variant

Fig. 17 The restoration of real image: Fruit

6.6 Cross-Validation Experiments

The proposed approach is not limited to any specific forms of
PSF. To demonstrate this robustness to the PSF assumption,
we now perform the cross-validation experiments. For exam-
ple, in the diffraction-limited condition,where the underlying
true PSF is jinc function, we assume Gaussian kernel as the
retrieved PSF, and estimate the blur size s from the jinc-
blurred image. Fig. 13-(1), (2) show the minimizations of
prediction-SURE and SURE-variant for this case; Fig. 13-
(3) shows that the retrieved Gaussian kernel with s = 2.93 is
also a good approximation of the jinc function with t0 = 2.0.

Furthermore, it is also interesting to evaluate the approxi-
mation accuracy of the retrieved Gaussian kernel (26) to the
true jinc function (27) (assuming known in synthetic experi-
ments). Hence, we perform the following approximations for
the comparison:

1. Least-square fitting of Gaussian kernel to jinc function
with t0:

s1 = argmin
s

∑

i

∣
∣h(i; s) − h(i; t0)

∣
∣2.

2. Gaussian deconvolution of the jinc-blurred image with
minimum standard MSE:

s2 = argmin
s

‖̂xs − x‖2,

where x̂s denotes the restored image by the BM3D algo-
rithm [11], using Gaussian kernel with size s.

For jinc function with t0 = 2.0 (the case of Fig. 13),
we obtain that s1 = 2.85 and s2 = 2.88, which are very
close to the blindly estimated s = 2.93 and 2.96 by the
SURE-type minimizations. It implies that the estimated blur
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observed Text min. of prediction-SURE

6.0 6.2 6.4 6.6 6.8 7.0
0.0510

0.0512

0.0514

0.0516

0.0518

0.0520

blur size s of Gaussian kernel

 prediction-SURE

restored Text
min. of SURE-variant

6.0 6.2 6.4 6.6 6.8 7.0

2.54E-006

2.54E-006

2.54E-006

2.54E-006

2.54E-006

blur size s of Gaussian kernel

 SURE-variant

Fig. 18 The restoration of real image: Text

size by the SURE-type minimizations provides the nearly
optimal approximations ofGaussian kernel to true jinc func-
tion, and also yields the best deconvolution performance
using Gaussian kernel. Figure 14 shows a visual compar-
ison of deconvolution performances by BM3D algorithm
[11]. Though the blindly restored image using Gaussian ker-
nel is not satisfactory (the PSNR difference w.r.t. the exact
deconvolution is almost 1dB), it has already been the best
performance reached by Gaussian kernel.

Figure 15 shows the converse validation: assuming jinc
function as the retrieved PSF, to deconvolve the Gaussian
blurred image.We also found that the estimated jinc function
with t = 1.30 is a good approximation of Gaussian kernel
with s0 = 2.0. Figure 16 shows the corresponding visual
example. We can draw the similar conclusions to Figs. 13
and 14.

As summary, the above cross-validation experiments
imply that the SURE-type minimizations behave like the
accurate approximation of the assumedPSF to the underlying
true PSF, even if the twoPSFhave different parametric forms.
In other words, the SURE-type minimizations naturally find
the closest blur kernel to the underlying true one, within the
presumed function of PSF, no matter both the retrieved and
true PSF belong to the same function family or not.

6.7 Application to Real Images

In our last set of experiments, we perform experiments with
two real camera-captured images: Fruit and Text, shown in
Figs. 17 and 18. For both real images, we assume the under-
lying PSF as Gaussian function. For Fruit, the estimated blur
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size is 4.72 by prediction-SURE and 4.78 by SURE-variant.
For Text, the estimated result is 6.43 and 6.41 by the two
criteria, respectively. Then, we apply BM3D algorithm [11]
to perform deconvolution, with the estimated PSF. Figures
17 and 18 shows the restorations with the estimated PSF
by prediction-SURE, which achieved great improvements of
visual quality. Since the estimation results by the two criteria
are very similar, we omit the SURE-variant results here.

7 Conclusions

In this paper, we proposed two novel criteria for PSF
estimation—prediction-SURE and SURE-variant. We have
shown that based on a linear smoother filtering with a
frequency-adaptive regularization term, the SURE-typemin-
imizations yield highly accurate parametric PSF estimation,
and outperform other regularizers. In addition, one can read-
ily apply the SURE-variant without the knowledge of noise
variance.

The examples of the blur kernel listed in the paper are but
the exemplifications of the proposed framework for paramet-
ric PSF estimation. It is worth noting that the SURE-type
minimization itself, which does not specify any particu-
lar parametric form of PSF as shown in (24) and (25), is
applicable for a great variety of PSF models. Furthermore,
the cross-validation experiments showed that the proposed
framework is robust to the PSF assumption: it naturally seeks
the best approximation of the underlying true PSF, if the
retrieved function belongs to different family of the true one.
There is huge potential to develop specific algorithms for
various applications, based on the SURE-type criterion.
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Appendix 1: Proof of Theorem 3

Proof Based on Lemma 1, the prediction-SURE can be writ-
ten as

ε = 1

N

∥
∥Uy − y

∥
∥
2 + 2σ 2

N
divy

(

Uy
) − σ 2.

We omit the subscript UH,λ as U for brevity in this proof.
Now, we are going to compute the divergence term—

divy
(

Uy
)

. Notice that thematrixU is the function of y, hence,
divy

(

Uy
) = Tr(U).

First, by definition of divergence term, we have

divy
(

Uy
) = Tr(U) +

(
∂diag(U)

∂y
︸ ︷︷ ︸

α

)T

y, (28)

where the vector diag(U) ∈ RN consists of the diagonal
element Un,n of matrix U:

∂diag(U)

∂y
=

[
dU1,1(y)
dy(0)

,
dU2,2(y)
dy(1)

, . . . ,
dUN ,N (y)
dy(N − 1)

]T

Notice that under periodic boundary condition,U is circulant
matrix, whose diagonal element is a constant given by

Un,n(y) = uN (0)
︸ ︷︷ ︸

filter

= 1

N

N−1
∑

k=0

|H(k)|2
|H(k)|2 + λ

|Y (k)|2
︸ ︷︷ ︸

U (k)

, for n = 0, 1, ..., N − 1.

The second equality is from inverse Fourier transform. Now,
we consider the n-th element of α:

αn = ∂Un,n(y)
∂y(n)

= ∂Un,n(y)
∂|Y (k)|2 · ∂|Y (k)|2

∂y(n)

= 1

N

N−1
∑

k=0

∂
|H(k)|2

|H(k)|2+ λ

|Y (k)|2

∂|Y (k)|2 · ∂|Y (k)|2
∂y(n)

,

where

∂

( |H(k)|2
|H(k)|2 + λ

|Y (k)|2

)

∂|Y (k)|2 = |H(k)|2λ
(

|H(k)|2 + λ
|Y (k)|2

)2 · |Y (k)|4

and for any fixed n:

∂|Y (k)|2
∂y(n)

=
∂

∣
∣
∣
∣

N−1
∑

l=0

y(l)e− j 2πklN

∣
∣
∣
∣

2

∂y(n)

=
∂

(∣
∣
∣
∣

N−1
∑

l=0

y(l) cos
2πkl

N

∣
∣
∣
∣

2

+
∣
∣
∣
∣

N−1
∑

l=0

y(l) sin
2πkl

N

∣
∣
∣
∣

2)

∂y(n)
,
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where the two terms are

∂

( N−1
∑

l=0

y(l) cos
2πkl

N

)2

∂y(n)

= 2 cos
2πnk

N

( N−1
∑

l=0

y(l) cos
2πlk

N

)

= 2 cos
2πnk

N
R{Y (k)}

and

∂

( N−1
∑

l=0

y(l) sin
2πkl

N

)2

∂y(n)

= 2 sin
2πnk

N

( N−1
∑

l=0

y(l) sin
2πlk

N

)

= −2 sin
2πnk

N
I{Y (k)}

Hence, αn becomes

αn = 2

N

N−1
∑

k=0

|H(k)|2λ
(

|H(k)|2 + λ
|Y (k)|2

)2 · |Y (k)|4
︸ ︷︷ ︸

V (k):real-valued

·
(

R{

Y (k)
}

cos
2πnk

N

−I{

Y (k)
}

sin
2πnk

N

)

= 2

N

N−1
∑

k=0

R{

V (k)Y (k)
︸ ︷︷ ︸

G(k)

}

cos
2πnk

N

− 2

N

N−1
∑

k=0

I{

V (k)Y (k)
︸ ︷︷ ︸

G(k)

}

sin
2πnk

N

= 2R{g(n)},

where g(n) is the inverse Fourier transform of G(k) =
V (k)Y (k): g(n) = 1

N

∑N−1
k=0 G(k)e j

2πnk
N . Since V (k) is real-

valued, andY (k) isHermitian symmetric, g(n) is real-valued.
Thus, we have αn = 2R{g(n)} = 2g(n).

Finally, the second term of (28) becomes

αTy = 2(FG)TFY = 2GTFTFY = 2GTY

=
N−1
∑

k=0

V (k)Y ∗(k)Y (k) =
N−1
∑

k=0

V (k)|Y (k)|2

=
N−1
∑

k=0

|H(k)|2λ
(

|H(k)|2 + λ
|Y (k)|2

)2 · |Y (k)|2
︸ ︷︷ ︸

Q(k)

,

where F is 1-D DFT matrix. The proof is completed. 	


Appendix 2: Proof of Corollary 1

Proof The proof is very similar to that of Theorem 3 (see
Appendix 1). The only difference from one-dimensional case

is how to compute ∂|Y (k1,k2)|2
∂y(n1,n2)

:

∂|Y (k1, k2)|2
∂y(n1, n2)

=
∂

∣
∣
∣
∣

M−1
∑

l1=0

N−1
∑

l2=0

y(l1, l2)e
− j

2πk1l1
M e− j

2πk2l2
N

∣
∣
∣
∣

2

∂y(n1, n2)
.

The numerator is

∣
∣
∣
∣

M−1
∑

l1=0

N−1
∑

l2=0

y(l1, l2)e
− j

2πk1 l1
M e− j

2πk2 l2
N

∣
∣
∣
∣

2

=
[ M−1

∑

l1=0

N−1
∑

l2=0

y(l1, l2)
(

cos
2πk1l1
M

cos
2πk2l2

N
− sin

2πk1l1
M

sin
2πk2l2

N
︸ ︷︷ ︸

A(l1,l2)

)]2

+
[ M−1

∑

l1=0

N−1
∑

l2=0

y(l1, l2)
(

cos
2πk1l1
M

sin
2πk2l2

N
+ sin

2πk1l1
M

cos
2πk2l2

N
︸ ︷︷ ︸

B(l1,l2)

)]2

.

(29)

The derivatives of both the terms of (29) are

∂

[ M−1
∑

l1=0

N−1
∑

l2=0

y(l1, l2)A(l1, l2)

]2

∂y(n1, n2)

= 2

( M−1
∑

l1=0

N−1
∑

l2=0

y(l1, l2)A(l1, l2)

︸ ︷︷ ︸

R{Y (k1,k2)}

)

×
(

cos
2πk1n1

M
cos

2πk2n2
N

− sin
2πk1n1

M
sin

2πk2n2
N

︸ ︷︷ ︸

A(n1,n2)

)
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and

∂

[ M−1
∑

l1=0

N−1
∑

l2=0

y(l1, l2)B(l1, l2)

]2

∂y(n1, n2)

= 2

( M−1
∑

l1=0

N−1
∑

l2=0

y(l1, l2)B(l1, l2)

︸ ︷︷ ︸

−I{Y (k1,k2)}

)

×
(

cos
2πk1n1

M
sin

2πk2n2
N

+ sin
2πk1n1

M
cos

2πk2n2
N

︸ ︷︷ ︸

B(n1,n2)

)

.

Hence, αn1,n2 is

αn1,n2 = 2

MN

M−1
∑

k1=0

N−1
∑

k2=0

|H(k1, k2)|2λ
(

|H(k1, k2)|2 + λ
|Y (k1,k2)|2

)2 · |Y (k1, k2)|4
︸ ︷︷ ︸

V (k1,k2):real-valued

·
(

R{Y (k1, k2)}A(n1, n2) − I{Y (k1, k2)}B(n1, n2)
)

= 2

MN

M−1
∑

k1=0

N−1
∑

k2=0

R{

V (k1, k2)Y (k1, k2)
︸ ︷︷ ︸

G(k1,k2)

}

A(n1, n2)

− 2

MN

M−1
∑

k1=0

N−1
∑

k2=0

I{

V (k1, k2)Y (k1, k2)
︸ ︷︷ ︸

G(k1,k2)

}

B(n1, n2)

= 2R{

g(n1, n2)
}

,

where g(n1, n2) is the inverse Fourier transform ofG(k1, k2)
= V (k1, k2)Y (k1, k2): g(n1, n2) = 1

MN

∑M−1
k1=0

∑N−1
k2=0

G(k1, k2)e j
2πn1k1

M e j
2πn2k2

N . Since V (k1, k2) is real-valued,
and Y (k1, k2) is Hermitian symmetric, g(n1, n2) is real-
valued.Thus,wehaveαn1,n2 = 2R{g(n1, n2)} = 2g(n1, n2).

Finally, the second term of (28) becomes

αTy = 2(FG)TFY = 2GTFTFY = 2GTY

=
M−1
∑

k1=0

N−1
∑

k2=0

V (k1, k2)Y
∗(k1, k2)Y (k1, k2)

=
M−1
∑

k1=0

N−1
∑

k2=0

V (k1, k2)|Y (k1, k2)|2

=
M−1
∑

k1=0

N−1
∑

k2=0

|H(k1, k2)|2λ
(

|H(k1, k2)|2 + λ
|Y (k1,k2)|2

)2 · |Y (k1, k2)|2
︸ ︷︷ ︸

Q(k1,k2)

,

where F is 2-D DFT matrix. The proof is completed. 	
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