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The point spread function (PSF) plays a fundamental role in fluorescence microscopy. A realistic and accurately
calculated PSF model can significantly improve the performance in 3D deconvolution microscopy and also the
localization accuracy in single-molecule microscopy. In this work, we propose a fast and accurate approximation
of the Gibson–Lanni model, which has been shown to represent the PSF suitably under a variety of imaging
conditions. We express the Kirchhoff’s integral in this model as a linear combination of rescaled Bessel functions,
thus providing an integral-free way for the calculation. The explicit approximation error in terms of parameters is
given numerically. Experiments demonstrate that the proposed approach results in a significantly smaller com-
putational time compared with current state-of-the-art techniques to achieve the same accuracy. This approach
can also be extended to other microscopy PSF models. © 2017 Optical Society of America

OCIS codes: (180.2520) Fluorescence microscopy; (180.6900) Three-dimensional microscopy.
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1. INTRODUCTION

Fluorescence microscopy is widely used in biological research to
analyze 3D structures of living cells and tissues. The point
spread function (PSF) of a microscope describes the response
of this imaging system to a point source or object. An accurate
PSF is highly desirable in deconvolution microscopy because of
its critical influence on the restoration quality. Several works
have focused on using more accurate PSF models in wide-field
microscopy [1–3] or confocal microscopy [4,5] in order to
improve the resolution of the images. We focus on 3D wide-
field fluorescence microscopy, which is the general setting of
live cell imaging. In this case, the PSF is axially asymmetric
and depth variant. The asymmetry results from the mismatch
between the refractive indices of the immersion medium and of
the specimen. The depth dependence results from the optical
path difference between the ideal and real conditions, which
depends on the depth of the object location [6].

In addition, the PSF model has also a major influence on
single-molecule localization microscopy [7–10]. Despite the
widespread approximation of the PSF by a Gaussian, it has
been argued that a more realistic model can significantly
improve the localization accuracy [9,11–13]. While a 2D
PSF can be reasonably well approximated by a Gaussian kernel,
no Gaussian can accurately represent a complete 3D PSF in
fluorescence microscopy [14]. Indeed, the Gaussian model

provides a good approximation to the 3D PSF only within a
limited spatial range near the focus. The trade-off between
using the simple Gaussian and realistic models is computational
complexity versus accuracy.

Methods to estimate the realistic PSF can be classified into
two categories, namely, experimental and analytical. The exper-
imental PSF reflects the imaging conditions and thus contains
both the intrinsic and extrinsic aberrations [1]. Some works
[15,16] are trying to retrieve PSFs at various depths from a large
number of measured PSFs using a method described by Hanser
et al. [17]. This approach, however, has difficulties in imaging
subresolution beads with low signal-to-noise ratios and thus
needs to average several measurements. Moreover, the imaging
conditions of experimental PSFs are different from those in
actual imaging. The alternative would be to use an analytical
model of the PSF that takes into account the physical
aberrations of the acquisition system.

The literature on PSF modeling in wide-field microscopy is
extensive, but the most popular one is the Gibson–Lanni model
[6]. This model is based on the Kirchhoff ’s diffraction integral
and a calculation of the optical path difference (OPD) between
design and experimental conditions. It accounts for coverslips
and other interfaces between the specimen and the objective.
Compared to vectorial-based models [18,19], the Gibson–
Lanni model is simpler and has the advantage of depending
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only on the standard parameters of the objective and the optical
properties of the specimen. It has been shown to be very useful
for deconvolution microscopy [2,20–23] and also for particle
localization [8,12,24,25].

The main limitation of the Gibson–Lanni PSF model,
however, is computational. Accurate computation of the
Kirchhoff ’s integral for all 3D pixels is CPU intensive. Apart
from applications in single-molecule localization microscopy,
a fast PSF computation is necessary in 3D deconvolution
microscopy. Most of the high-performance deconvolution
algorithms rely on repeated estimations of the PSF model
[2,26–29]. In the case of depth-dependent deconvolution
[2,1,30], multiple PSFs varying as a function of depth have
to be used. After precomputing the model PSFs at various
depths, Arigovindan et al. [30] proposed an efficient method
based on principal component analysis for the depth-varying
representations. Hence, an improved model PSF calculation
method is likely to result in a significant improvement in
the deconvolution process. Current state-of-the-art techniques
[12,31] adopt a so-called progressive manner with the Simpson
rule to calculate the integral. However, achieving adequate
accuracy is still time consuming.

In this work, we propose a fast and accurate approximation
to the Gibson–Lanni PSF model by expressing the integral as a
linear combination of rescaled Bessel functions. This approach
is significantly more efficient computationally than current
state-of-the-art techniques. In addition, using this Bessel series
approximation amounts to replacing most of physical param-
eters by mathematical parameters. This may provide new
insight into the automatic estimation or fitting of the PSF
directly from the measurements.

The paper is organized as follows. In Section 2, we describe
the Gibson–Lanni model and our computational approach
based on the Bessel function. The discussions of the approxi-
mation error and computation time are also given. We then
present our experimental results in Section 3 and conclude with
a summary in Section 4.

2. 3D PSF COMPUTATION IN FLUORESCENCE
MICROSCOPY

A. Gibson–Lanni Model

A particular challenge in the PSF modeling of a microscope is
the lack of detailed information about the exact design condi-
tions of the objective lenses. The parameters that are usually
known include the optical characteristics of the objective
(for example, the numerical aperture) and the experimental
conditions (i.e., refractive indices of the specimen and of the
immersion medium, working distance, etc.). Thus, it is desir-
able to obtain a general formulation of the PSF that is based on
these known parameters. PSF modeling has been addressed
diversely in the literature. Vectorial approaches that relay on
Maxwell’s equations directly, such as the Richards–Wolf model
[18], the Török–Varga model [19], and Hell et al. [32], provide
a rigorous treatment of diffraction in microscopes. On the other
hand, scalar approaches use the diffraction theory of light
[6,33]. The most popular model is Gibson–Lanni’s [6]. One
of the its advantages is that it can predict the nonsymmetric
patterns in the axial direction, which are due to refractive index

mismatch among different layers. In contrast to vectorial mod-
els, which require the evaluation of three integrals per point,
scalar models involve only one integral per point and thus
are computationally less expensive. Haeberlé [34] showed that
the vectorial model can also be combined with the ease of use
of the Gibson–Lanni scalar approach, which has the advantage
of introducing explicitly the known or sample-dependent
parameters [31].

The Gibson–Lanni model relies on the assumption that all
observed aberrations are generated by factors external to the
objective and thus originate in the combination of three layers
(specimen, coverslip, and immersion medium). These aberra-
tions can be characterized by the OPD between a ray in a
design system and one in the experimental condition, as illus-
trated in Fig. 1. The OPD is given by OPD � �ABCD�−
�PQRS�, where �ABCD� is the path of a ray from a point source
in a nondesign system when the object lies at a depth zp and
�PQRS� is the corresponding ray in the design system, where
the point-source object is located immediately below the
coverslip. See Fig. 1 and [6] for details.

Taking into account the law of refraction, the OPD is [6]

OPD�ρ; z; zp; p�

� �z� t�i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2i − �NAρ�2

q

� zp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2s − �NAρ�2

p
− t�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n�i �2 − �NAρ�2

q

� tg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2g − �NAρ�2

q
− t�g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n�g �2 − �NAρ�2

q
; (1)

where ρ is the normalized radius in the focal plane, z is the axial
coordinate of the focal plane, zp is the axial location of the point
source in the specimen layer relative to the coverslip, and
p � �NA; n; t� is a parameter vector containing the physical
parameters of the optical system with NA as the numerical
aperture, n � �ni; n�i ; ng ; n�g ; ns� representing the refractive

Fig. 1. Optical paths in the Gibson–Lanni model in the design
condition (dashed line) and in the experimental condition (solid line).
The optical path difference is given by OPD � �ABCD� − �PQRS�.
n � �ni; n�i ; ng ; n�g ; ns� and t � �t i ; t�i ; tg ; t�g ; t s� represent the refrac-
tive indices and the thickness values of individual layers, respectively.
zp is the axial location of the point source in the specimen relative to
the coverslip. O is the origin of the coordinate system. See [6] for
details.
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indices, and t � �t i ; t�i ; tg ; t�g ; t s� as the thickness values of
individual layers.

Because of the hypothesis of spatial invariance in planes
perpendicular to the optical axis, the PSF is radially symmetric,
and then the Gibson–Lanni model can be expressed as a

function of the coordinates r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x − xp�2 � �y − yp�2

q
and

z, given by [6]

PSF�r; z; zp;p� �
����A

Z
1

0

exp�iW �ρ; z; zp;p��J0�krNAρ�ρdρ
����
2

;

where the phase term W �ρ; z; zp; p� � kOPD�ρ; z; zp; p�, and
k � 2π∕λ is the wave number of the emitted light. A is a con-
stant complex amplitude, and J0 denotes the Bessel function of
the first kind of order zero. Note that when imaging a source
located at the interface (zp � 0), the PSF corresponds to the
standard defocus model [33].

In practice, in order to ensure the validity of OPD Eq. (1),
the integration intervals may not always be ρ ∈ �0; 1�. We set
a � minfNA; ns; ni; n�i ; ng ; n�g g∕NA, so the Gibson–Lanni
model becomes

PSF�r;z;zp;p��
����A

Z
a

0

exp�iW �ρ;z;zp;p��J0�krNAρ�ρdρ
����
2

:

(2)

B. Bessel Series Approximation

The accurate computation of the Gibson–Lanni model, how-
ever, is very time consuming because the integration in Eq. (2)
requires intensive numerical evaluation. This may limit appli-
cations in blind deconvolution [2,4], PSF fitting [12], and
localization microscopy [9,24,25].

We propose a Bessel series approximation for the Gibson–
Lanni model. It is integration-free and provides a fast and
accurate approximation. The main idea is based on the fact
that the integral

R
a
0 tJ0�ut�J0�vt�dt can be explicitly computed

as [35]Z
a

0

tJ0�ut�J0�vt�dt � a
�
uJ1�ua�J0�va� − vJ0�ua�J1�va�

u2 − v2

�
;

(3)

when u ≠ v, and
R
a
0 tJ0�ut�J0�vt�dt � a2

2 �J1�ua��2, if u � v.
We expand the function exp�iW �ρ; z; zp; p�� in Eq. (2) as a

linear combination of rescaled Bessel functions:

exp�iW �ρ; z; zp; p�� �
X∞
m�1

cm�z�J0�σmρ�; (4)

where cm�z� are complex-valued coefficients (to be determined)
with respect to the depth z, and σm are (known) scaling factors.
The usual values for the wavelength λ in a conventional micro-
scope are between 340 and 750 nm, and the numerical aperture
is often less than 1.4 [36]. In this work, we empirically set the
scaling factor as σm � NA�3m − 2�λ0∕λ, where λ0 � 436 nm.
This series can be truncated and PSF�r; z; zp;p� is approxi-
mated using the first M terms. Then the Gibson–Lanni model
in Eq. (2) is approximated by

PSFapp�r; z; zp; p� ≅
����A

XM
m�1

cm�z�Rm�r;p�
����
2

; (5)

where m � 1; 2;…; M; β � krNA, and

Rm�r;p� �
σmJ1�σma�J0�βa�a − βJ0�σma�J1�βa�a

σ2m − β2
:

Through the approximation in Eq. (5), the Gibson–Lanni
model is now described by two physical parameters (λ and NA)
and a set of mathematical parameters cm�z�. Importantly, the
term Rm�r; p� needs to be calculated only once and can then
be used for all slices of the 3D PSF (or any planes of same
dimensions). Because of the rotational symmetry of the PSF
in each slice, we compute a two-times-oversampled component
only in one radial direction. Then, this component is resampled
to a Cartesian grid using piecewise-linear interpolation. The
flow chart of the proposed approach is shown in Fig. 2.

For the sake of simplicity, we omit the depth parameter z in
the following representations of the coefficients cm�z�. We use
least-squares fitting to determine their values. Specifically, we
sample K points of ρ uniformly in the interval �0; a� as
ρk � k

K −1 a, k � 0;…; K − 1, and then these coefficients can
be obtained by solving the minimization problem

ĉ � min
c
kF − Jck2;

where c � �c1; c2;…; cM �T, J � �J0�σmρk��1≤k≤K ;1≤m≤M ,
F � �f �ρ1�; f �ρ2�;…; f �ρK ��T, and f �ρ� � exp�iW �ρ; z;
zp; p��. The corresponding solution is then

ĉ � �JTJ�−1JTF :
The approximation accuracy is controlled by the number of

basis functionsM and the sampling number K . Basically, larger
M and K improve the approximation accuracy but with in-
creased time cost. This will be discussed in Section 2.C.
Figure 3 shows a typical example of the calculated PSF where
M � 102 and K � 103 compared with the ground-truth PSF.
Note that the nonsymmetric pattern in the axis direction
originates from a refractive index mismatch among different
layers. It also depends on the defocus position zp. Aguet et al.
[8] studied this aberration effect in the subresolution axial
localization and found that taking out-of-focus acquisitions
can lead to a better precision in the estimation.

The computational cost of the proposed approach is mainly
due to the following three aspects: (1) calculation of the basis
function Rm�r; p� in Eq. (5); (2) determination of the coeffi-
cients cm for each depth z; and (3) the polar-to-Cartesian trans-
formation from 2D components to the final 3D PSF. Typically,
if the xyz dimensions of the PSF are each proportional to S, the
computation cost of the first two aspects grows like S2 and S,

Fig. 2. Flow chart of the proposed PSF calculation. The inset cube
is the obtained PSF.
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respectively, while the cost of the interpolation step is propor-
tional to S3. For small PSF sizes, the time cost of the first two
aspects is significant, e.g., they account for up to 47% of the
total computation cost of a PSF of size 128 × 128 × 64 (when
M � 102 and K � 103). For large sizes though, the total com-
putation cost is essentially dominated by the interpolation step.

C. Analysis of Error and Computational Time

We performed our analysis on different settings: the wavelength
λ is in the range from 340 to 750 nm with a step of 50 nm; the
numerical aperture NA is from 1.0 to 1.4 with a step of 0.02;
and the refractive index of the specimen ns is from 1.3 to 1.5
with a step of 0.05. There are in total 10,080 PSFs of size
256 × 256 × 128. We first generate these PSFs independently
based on the Simpson rule. The number of subintervals is set to
107. This procedure is very time consuming and thus not prac-
tical, but it is useful in providing a set of ground-truth PSFs. All
experiments are carried out on a iMac with a 2.7 GHz Intel
Core i5 with 4 GB of RAM. The approximation error is mea-
sured by the relative squared error (RSE) [14], defined as

RSE :� kPSF − PSFappk22
kPSFk22

× 100%;

where PSFapp is the approximated PSF, and PSF is the
ground truth.

Empirically, as shown in Fig. 4(a), the approximation error
RSE�M;K � with respect to the number of basis functions M
and the sampling number K when M ∈ �30; 100� and K ∈
�50; 1000� can be well described by

RSEest�M;K � �
�
M
45

�
−6.5

�
K
80

�
−1.5

: (6)

Compared with the sampling number K , largerM leads to a
faster decay rate in the approximation error. The computational
time can be described as

Timeest�M;K � � 2.87 × 10−4M � 3.63 × 10−5K � 0.22;
(7)

as shown in Fig. 4(b). Different computational environments
may have different expressions for Timeest. However, given an
approximation error ϵ, we can solve the following minimization
problem to find the optimal approximation parameters M
and K :

min
M;K

Timeest�M;K �; s:t: RSEest�M;K � � ε:

The corresponding solution can be obtained as�
M � 43.50ϵ−1∕8;
K � 1.8M:

3. EXPERIMENTAL RESULTS

A. Comparison with State-of-the-Art Techniques

As a typical example, we set the parameters of a microscope as
follows: NA � 1.4, λ � 610 nm, ns � n�s � 1.33, ni �
n�i � 1.5, ng � n�g � 1.5, t�i � 150 μm, tg � 170 μm,
tg � t�g , the lateral resolution Δxy is 100 nm, the axial resolu-
tion Δz is 250 nm, and the position of the point
source zp � 2000 nm.

We compare with two state-of-the-art techniques, psfModel
[31] and PSFGenerator [12] for the computation of 3D PSF in
fluorescence microscopy. psfModel is available at http://www.
francoisaguet.net/software.html and PSFGenerator is available
at http://bigwww.epfl.ch/algorithms/psfgenerator. Note that
psfModel only supports odd dimensions. To evaluate the com-
putation time subject to the same approximation accuracy, we
now choose the number of basis functionsM and the sampling
number K so that the resulting RSE is identical to the RSEs in
the other two techniques. Figure 5 shows the computational
time comparison for different image sizes with psfModel and
PSFGenerator (“Best” option) under the same approximation
accuracy. It is found, in particular, that the proposed approach
is roughly 64 times faster than psfModel and 498 times faster
than PSFGenerator for image size 511 × 511 × 255. It is worth
mentioning that the proposed method is implemented using
unoptimized MATLAB code only (no mex files), which con-
trasts with the C++/Java optimized code of other algorithms.

(a) (b)

Fig. 4. Scatterplot demonstrating the accuracy of Eqs. (6) and (7)
regarding (a) the approximation error and (b) the computational time.
Each point corresponds to one PSF, generated by varying the design
parameters p � �NA; n; t�, and the approximation parameters K and
M . See text for details.

(a)

(b)

Fig. 3. (a) Radial and (b) axial intensity profiles (normalized) of the
calculated PSF and the ground truth for a 1.4 NA oil immersion ob-
jective with wavelength λ � 610 nm. The point source is located at
zp � 400 nm. The ground truth is generated by the Simpson rule (the
number of subintervals is set to 107). The number of basis functions
and the sampling number in the proposed approach are set to beM �
102 and K � 103, respectively. The maximum difference between
them is 2.81 × 10−4.
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B. Speed Comparison with a Gaussian

We also compared with the computation of a Gaussian func-
tion, which is commonly used in single-molecule localization
microscopy. Such approximation, however, discards the side-
lobes of the PSF, which are particularly important in 3D
PSF modeling [12,14]. Table 1 shows the computational time
of a Gaussian function and the proposed approach with

different PSF sizes. The approximation error of our approach
is set to be RSE � 0.1%. This comparison shows that the com-
putation of a realistic PSF requires comparable computational
cost as the computation of a Gaussian, facilitating its possible
use in localization microscopy.

4. CONCLUSION

We have proposed a fast and accurate calculation method of the
Gibson–Lanni model for estimating the 3D PSF in fluores-
cence microscopy. The proposed approach significantly outper-
forms state-of-the-art techniques. Using this new approach for
estimating a realistic PSF model is expected to improve the re-
storation performance in 3D deconvolution microscopy and
also the resolution in single-molecule localization microscopy.

We present some preliminary results in [23] on the restora-
tion of 3D fluorescence microscopy images using the calculated
PSFs by the proposed approach. The blind estimation of the
microscopy PSF and its evaluation on the restoration accuracy
will be included in our future works. Note that it is also possible
to extend the proposed approach to other scalar-based models,
such as the Born–Wolf model [33], and even vector-based
models, such as the Richards–Wolf model [18,31] and the
Török–Varga model [19,34]. The source codes are available
at http://www.ee.cuhk.edu.hk/~tblu/demos.

Funding. Research Grants Council of Hong Kong (AoE/
M-05/12, CUHK14200114); National Natural Science
Foundation of China (NSFC) (61401013).
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