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Abstract
Point spread function (PSF) estimation plays an important role in blind image deconvolution. It has been shown that incorpo-
rating Wiener filter, minimization of the predicted Stein’s unbiased risk estimate (p-SURE)—unbiased estimate of predicted
mean squared error—could yield an accurate PSF estimate. In this paper, we provide a theoretical analysis for the PSF esti-
mation error, which shows that the better deconvolution leads to more accurate PSF estimate. It motivates us to incorporate
an �1-penalized sparse deconvolution into the p-SURE minimization, instead of the Wiener-type filtering. In particular, based
on FISTA—one of the most popular iterative �1-solvers, we evaluate the p-SURE for each update, by Jacobian recursion
and Monte Carlo simulation. Numerical results of both synthetic and real experiments demonstrate the improvements in PSF
estimate, and therefore, deconvolution performance.

Keywords Blind deconvolution · Parametric PSF estimation · Predicted Stein’s unbiased risk estimate (p-SURE) · �1-based
sparse deconvolution · Fast iterative soft-thresholding algorithm (FISTA)

1 Introduction

Problem statement—In many applications, e.g., medical
imaging [14], fluorescence microscopy [1], infrared imaging
[30] and photography [24], the observed images are often
degraded by the blurring effect and measurement noise (e.g.,
photon counting and readout noise) [1,30]. This image degra-
dation is often mathematically expressed by the linear model
[11,22,24,27]:

y = H0x0 + b (1)

where y ∈ R
N is the observed data of the original (unknown)

x0 ∈ R
N , H0 ∈ R

N×N is a ground truth (unknown) convo-
lution matrix constructed by point spread function (PSF) h0,
the vector b ∈ R

N is a zero-mean additive white Gaussian
noise with variance σ 2. Blind image deconvolution attempts
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to estimate the original image x0, from the blurred image y
only.
Related works—Blind deconvolution has been an important
image processing topic for several decades [15]. Regulariza-
tion is a standard technique to solve the ill-posed problem.
It incorporates a priori information of the original image x0
and PSF h0 and formulates deconvolution process as a con-
strained optimization problem [13,24]. People may refer to
[4,15] for a comprehensive review.

The key difficulty of this problem lies in the PSF estima-
tion, since the deconvolution performance strongly depends
on the accuracy of the PSF estimate [17]. In this paper, we
focus on the parametric PSF estimation, where the PSF is
of known parametric form with a small number of unknown
parameters,1 denoted by a parameter vector s.
SURE-based approach [25]—In [25], we proved that incor-
porating the Wiener-type filtering (expressed in frequency
domain):

̂Xs(ω) = H∗
s (ω)

|Hs(ω)|2 + λ‖ω‖22
· Y (ω) (2)

1 See [13,25] for a few parametric examples.
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the minimization of predicted-MSE [25,31]:

p-MSE(s) = 1

N

∥

∥Hsx̂s − H0x0
∥

∥

2
2 (3)

leads to very accurate estimate of PSF parameter s, where
Hs and x̂s are obtained using the tentative PSF parameters
s. Refer to Theorem 2.1 and Corollary 2.1 in [25] for the
detailed proof.

Note that the p-MSE is not accessible in practice, due
to the unknown H0 and x0. Hence, [23,25,31] proposed a
predicted-SURE:

p-SURE(s) = 1

N

∥

∥Hsx̂s − y
∥

∥

2
2 + 2σ 2

N
Tr

(

HsJy (̂xs)
) − σ 2(4)

as a reliable substitute for p-MSE, which can be computed in
practice. Here, N stands for the pixel number of the image, y
is the blurred and noisy image, x̂s denotes the deconvolution
estimate using Hs. The Jacobian matrix Jy (̂xs) is defined as
[25,31]:

[Jy (̂xs)]m,n = ∂(̂xs)m
∂ yn

See Theorem 3.1 of [25] for the proof of the unbiasedness of
p-SURE w.r.t. p-MSE.

The extensive tests of [25] demonstrated the superior
performance of p-SUREminimization (withWiener-type fil-
tering) to other methods, including GCV [20], kurtosis [12],
DL1C [9] and APEX [7].
Our contributions—In this paper, we further develop the p-
SURE framework by two contributions. First, we provide a
theoretical analysis for thePSFestimation error,which shows
that better deconvolution leads to more accurate PSF esti-
mate. It motivates us to incorporate the �1-penalized sparse
deconvolution into p-SURE, since the sparse deconvolution
is generally better than Wiener-type filtering. Second, we
propose a recursion of Jacobian matrix and Monte Carlo
simulation, to facilitate the p-SURE minimization with the
�1-estimate.
Additional remarks—Throughout this paper,we use boldface
lowercase letters, e.g., x ∈ R

N , to denote N -dimensional real
vectors. The linear (matrices) and nonlinear transformations
R

N → R
M are denoted by boldface uppercase letters, e.g.,

H ∈ R
M×N . HT ∈ R

N×M denotes the transpose of matrix
H. Also note that we use the subscript (·)0 to denote the true
(“ground truth”) quantity of (·); for example, matrix H0 is
the true quantity of H.

We always assume periodic boundary condition for lin-
ear filtering, which can be efficiently computed by discrete
Fourier transform (DFT). We denote the frequency represen-
tation of convolution matrix H by H(ω). Denote the DFT

coefficients of image data, say x, by X(ω). In the presenta-
tion, we will switch repeatedly between frequency domain
andmatrix language, to emphasize in this way the close links
between the two domains.

2 Error analysis of PSF estimation

2.1 The p-MSEminimization

The following theorem shows that the p-MSE minimization
yields exact estimate of H0.

Theorem 1 Minimizing the following p-MSE:

min
H

∥

∥Hx0 − H0x0
∥

∥

2
2 (5)

yields H(ω) = H0(ω) for ∀ω.

Proof (5) is equivalent to the following problem expressed
in frequency domain:
∑

ω

min
H(ω)

∣

∣H(ω) − H0(ω)
∣

∣

2 · ∣∣X0(ω)
∣

∣

2

which indicates that the minimizer is H(ω) = H0(ω) for
∀ω, when the p-MSE vanishes. ��

2.2 Error analysis for the PSF estimation

Since the exact x0 in (5) is unknown, we use the estimate
x̂ instead in practice. The following proposition states that
the PSF estimation error is upper bounded by the estimation
error of x0.

Proposition 1 Considering the minimization of p-MSE over
H:minH ‖Hx̂−H0x0‖22 with some estimate x̂, the estimation
error of H0(ω) satisfies:

∣

∣H(ω) − H0(ω)
∣

∣ ≤ C1 · δω + C2, ∀ω (6)

whereC1 andC2 are two constants, δω denotes the estimation
error of x̂:

∣

∣
X0(ω)−̂X(ω)

̂X(ω)

∣

∣ ≤ δω for ∀ω. Furthermore, (6) can
be simplified for the following two special cases:

– If ̂X(ω) = X0(ω), then the constant C1 = 0;
– For non-parametric setting of PSF, the constant C2 = 0.

Proof (upper-bound analysis)
The p-MSE can be expressed in frequency domain:

min
H

∑

ω

∣

∣H(ω)̂X(ω) − H0(ω)X0(ω)
∣

∣

2

︸ ︷︷ ︸

J (H)

(7)
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• Non-parametric case For the non-parametric setting of
PSF, H(ω) has the full degree of freedom. The solution
to (7), i.e., the minimizer of J (H), is obviously:

H �(ω) = H0(ω)
X0(ω)

̂X(ω)
= H0(ω)

(

1 + X0(ω) − ̂X(ω)

̂X(ω)
︸ ︷︷ ︸

	1ω

)

(8)

where 	1ω denotes the estimation error of ̂X(ω) w.r.t.
X0(ω). And the minimum value of J (H) is J �

1 =
J (H �) = 0.

1. Ideally, if ̂X(ω) = X0(ω), such that 	1ω = 0, (8) leads
to H �(ω) = H0(ω), which coincides with Theorem 1.

2. In practice, the estimate ̂X(ω) 
= X0(ω), we obtain from
(8):

∣

∣H �(ω) − H0(ω)
∣

∣ ≤ max
ω

(

|H0(ω)|
)

︸ ︷︷ ︸

C�

·max
ω

∣

∣	1ω
∣

∣

︸ ︷︷ ︸

δω

, ∀ω

• Parametric case In a parametric setting of PSF, H(ω)
is determined by a few PSF parameters s, denoted by
Hs(ω). The problem (7) becomes:

min
s

∑

ω

∣

∣Hs(ω)̂X(ω) − Hs0 (ω)X0(ω)
∣

∣

2

︸ ︷︷ ︸

J (s)

(9)

where s0 denotes the true PSF parameter. Let s� denote
the minimizer of J (s).

1. Ideally, if ̂X(ω) = X0(ω), (9) becomes:

min
s

∑

ω

∣

∣Hs(ω) − Hs0 (ω)
∣

∣

2 · ∣∣X0(ω)
∣

∣

2 (10)

– If the retrieved Hs(ω) has the same parametric form
with the true Hs0(ω), (10) leads to s� = s0 and the
minimum value of J (s) is J �

2 = J (s�) = J (s0) =
0 = J �

1 . It coincides with Theorem 1.
– If the retrieved Hs(ω) and the true Hs0(ω) belong

different parametric functions, due to the limitation of
degree of freedom of Hs(ω) (i.e., the small dimension
of parameter vector s, compared to the number of
frequency samples ω), a small error 	2ω should be
allowed: Hs� (ω) = Hs0(ω) + 	2ω, to guarantee the
existence of optimal s�,2 and the residual error is:

J �
2 = J (s�) =

∑

ω

|	2ω|2 · |X0(ω)|2

≥ min
ω

|X0(ω)|2 ·
∑

ω

|	2ω|2 > 0 = J �
1

2 The optimal solution s� may not be unique. The uniqueness of the
solution depends on the specific parametric form of PSF.

Finally, we obtain the following inequality:

∣

∣Hs� (ω) − Hs0 (ω)
∣

∣ ≤ max
ω

∣

∣	2(ω)
∣

∣ ≤
√

∑

ω

|	2ω|2

≤
√

J �
2

minω |X0(ω)|2 , ∀ω

2. In practice, the estimate ̂X(ω) 
= X0(ω). No matter if the
retrieved Hs(ω) and the true Hs0(ω) belong to the same
function family, the minimization (9) always yields:

Hs� (ω) = H0(ω)

(

1 + X0(ω) − ̂X(ω)

̂X(ω)
︸ ︷︷ ︸

	1ω

)

+ 	2ω; ∀ω

and

J �
2 = J (s�) =

∑

ω

|	2ω|2 · |X0(ω)|2

≥ min
ω

|X0(ω)|2 ·
∑

ω

|	2ω|2 > 0 = J �
1

where a small error 	2ω should be allowed for the
existence of optimal s�. Finally, we obtain the follow-
ing inequality:
∣

∣Hs� (ω) − H0(ω)
∣

∣ = ∣

∣H0(ω) · 	1ω + 	2ω
∣

∣

≤ ∣

∣H0(ω) · 	1ω
∣

∣ + ∣

∣	2ω
∣

∣

≤ max
ω

(|H0(ω)|)
︸ ︷︷ ︸

C�

·max
ω

|	1ω|
︸ ︷︷ ︸

δω

+max
ω

|	2ω|

≤ C� · δω +
√

J �
2

minω |X0(ω)|2 , ∀ω

Summarizing all the cases leads to the inequality (6),
where either C1 or C2 vanishes for some special cases. ��

The above theorem implies that the more accurate esti-
mate of x0 produces better estimate of H0. Therefore, it is
important to find better estimate of x0.

3 The p-SUREminimization with
�1-penalized sparse deconvolution

3.1 The proposed formulation

In [25], we use Wiener-type filtering as the estimate x̂.
To improve the accuracy of PSF estimation, we now pro-
pose to use the wavelet-based sparse deconvolution in
p-MSE/SURE, since it is generally better than Wiener fil-
tering in terms of deconvolution performance [2,16].

Given the fixed tentative parameters s and λ, the sparse
deconvolution is often formulated by the following typical
�1-based synthesis formulation [3,18]:

ĉs,λ = argmin
c

1

2

∥

∥y − HsRc
∥

∥

2
2 + λ

∥

∥c
∥

∥

1 (11)
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where R denotes 2-D wavelet reconstruction, ĉs,λ is the
wavelet coefficients. Then, the �1-estimated image is given
as x̂s,λ = R̂cs,λ.

We incorporate this �1-estimate into p-SURE and formu-
late the PSF parameter estimation as:

min
s,λ

1

N

∥

∥HsR̂cλ,s − y
∥

∥

2 + 2σ 2

N
Tr

(

HsRJy (̂cλ,s
) − σ 2

︸ ︷︷ ︸

p-SURE

(s, λ) (12)

3.2 Recursive evaluation of p-SURE for FISTA

To solve (12), we need to compute the solution ĉs,λ, its Jaco-
bianmatrix and p-SURE. First, to find the solution ĉs,λ, many
optimization algorithms can be used for solving (11), e.g.,
[8,10,19,21]. In this paper, we choose FISTA—one of the
most popular �1-solvers. The iteration scheme of FISTA is
[3] (ignoring the subscripts s and λ for brevity in this sub-
section):
⎧

⎪

⎪

⎨

⎪

⎪

⎩

c(i) = Tλ/L

(

z(i) − 1
LDH

T
(

HRz(i) − y
)

)

t (i+1) = 1+
√

1+4(t (i))2

2
z(i+1) = c(i) + ν(i)

(

c(i) − c(i−1)
)

(13)

where Tλ/L(·) denotes the soft-thresholding function with

the threshold λ/L , ν(i) = t (i)−1
t (i+1) , D denotes wavelet decom-

position, L is a Lipschitz continuous constant. In particular,
for orthonormal transform, it is easy to show that L = 1, if
the convolution kernel h is normalized [3]. In the remainder
of this paper, we use L = 1.

Regarding the Jacobian matrix of ĉ, we now propose a
recursive evaluation based on FISTA, i.e., computing Jy(c(i))

and p-SURE of c(i) by

p-SURE = 1

N

∥

∥HRc(i) − y
∥

∥

2
2 + 2σ 2

N
Tr

(

HRJy(c(i))
) − σ 2 (14)

during each iterate, until convergence.
Rewriting (13) as (L = 1):

c(i) = Tλ

(

B
︷ ︸︸ ︷

(

I − DHTHR
)

z(i) + DHTy
︸ ︷︷ ︸

u(i)

)

by the basic calculus and the property of Jacobian matrix
[31], we obtain:

Jy(c(i+1)) = P(i)(BJy(z(i)) + DHT)

Here, the matrix P(i) is diagonal with the diagonal elements
given as:

[

P(i)]

n,n =
{

1, if |u(i)
n | > λ

0, if |u(i)
n | ≤ λ

The Jacobian matrix of z(i+1) is:

Jy(z(i+1)) = Jy(c(i)) + ν(i)
(

Jy(c(i)) − Jy(c(i−1))
)

Finally, the recursions of Jacobian matrices for the FISTA
update (13) are:
{

Jy(c(i)) = P(i)
(

BJy(z(i)) + DHT
)

Jy(z(i+1)) = Jy(c(i)) + ν(i)
(

Jy(c(i)) − Jy(c(i−1))
) (15)

3.3 The computational issues

We can see that the key computational issue of the p-SURE
lies in Jacobian matrices and matrix trace. However, if both x
and y are the typical 256×256 grayscale images, the dimen-
sions of H, R and Jy(c(i)) will be 65,536 × 65,536. It is
generally difficult to explicitly store and compute such large
matrices, due to the limited computational resources.

In [5], the authors applied the Monte Carlo (MC) simu-
lation to compute the trace of matrix A ∈ R

N×N , based on
the fact that Tr(A) = E{nT0An0}, for a random vector n0 ∼
N (0, IN ), if An0 can be computed without explicit expres-
sion of the matrix A. The expectation can be approximately
computed by averaging a number of random realizations of
n0 (Q realizations in this paper). The procedure is shown in
Fig. 1.

Now, we use this procedure to compute the p-SURE for
FISTA. For the input noise n0 ∼ N (0, IN ), multiplying n0
on both sides of (15), we obtain:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Jy(c(i))n0
︸ ︷︷ ︸

n(i)
c

= P(i)BJy(z(i))n0
︸ ︷︷ ︸

n(i)
z

+P(i) DHTn0
︸ ︷︷ ︸

n1

Jy(z(i+1))n0
︸ ︷︷ ︸

n(i+1)
z

= (1 + ν(i)) Jy(c(i))n0
︸ ︷︷ ︸

n(i)
c

−ν(i) Jy(c(i−1))n0
︸ ︷︷ ︸

n(i−1)
c

(16)

Then, the trace term of p-SURE becomes:

Tr(HRJy(c(i))) = E
{

nT0HR Jy(c(i))n0
︸ ︷︷ ︸

n(i)
c

}

(17)

We can see that the recursion of Jacobian matrix boils
down to a simple evolution of the random noise n(i)

c and n(i)
z .

In addition, we have three remarks to facilitate theMC-based
computations of (16): for any input vector v,

– the outcome ofRv,Hv and the combinations of the oper-
ations can be efficiently computed by the wavelet and
Fourier transforms.

generate noise
n(q)
0 ∼ N (0, IN )

compute
output An(q)

0

compute T (q) =
(n(q)

0 )TAn(q)
0

Repeat for q = 1, 2, ..., Q

Tr(A) ≈ 1
Q

Q
q=1 T (q)

Fig. 1 MC simulation to evaluate matrix trace
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– it is easy to compute P(i)v for diagonal matrix P(i)

by the point-wise product [P(i)v]n = P(i)
n,nvn for n =

1, 2, . . . , N .
– Jy(c(i))v and Jy(z(i))v should be computed without
explicit expressions of the Jacobianmatrices. To this end,
c(0) and z(0) can be initialized as c(0) = z(0) = Dy, such
that Jy(c(0)) = Jy(z(0)) = D, which can be performed
by wavelet transform.

Thus, all the noise evolutions in (16) can be performed
without explicit matrix computation: the MC simulation
enables us to avoid the explicit Jacobian recursion of (15).
The procedure is depicted in Fig. 2.

3.4 Summary

Now we are able to evaluate p-SURE for the �1-estimate x̂λ

with a certain value of λ. It is then incorporated into the p-
SUREminimization for thePSFestimation,whoseprocedure
is shown in Fig. 3.

To minimize (12), we suggest to first find the optimal λ

with each tentative fixed s, and then, perform the exhaustive
search of s with the corresponding optimal λ.

input given y, Hs, λ
initial c(0), z(0), t(0)

update c(i) and z(i) by (13)

compute n(i)
c , n(i)

z and n1 by (16)

p-SURE
of c(i) by
(17), (14)

FISTA iteration by i := i + 1

FISTA with p-SURE evaluation

output cs,λ and xs,λ

p-SURE

Fig. 2 p-SURE-MC evaluation for FISTA

tentative
Hs

λ

compute cs,λ

by FISTA
comp. and min.
p-SURE(Hs, λ)

to be est. FISTA min. p-SURE

Stage 1: PSF estimation (focus of this work)

perform non-blind
deconvolution with

estimated Hs

Stage 2:
Deconvolution

Fig. 3 The flowchart of PSF estimation: joint minimization of the p-
SURE over Hs and λ, as shown in (12), where the value of p-SURE is
obtained by Fig. 2

Fig. 4 Original test images:aCameraman256×256;bCoco256×256;
c House 256 × 256; d Mandrill 512 × 512

4 Experimental results and discussion

4.1 Experimental setting

The test dataset contains four 8-bit images of size 256× 256
or 512 × 512 displayed in Fig. 4, covering a wide range of
natural images.

We exemplify the proposed approach with two typical
parametrized PSF’s, which have been frequently used many
practical applications:

– Gaussiankernel,with anunknownparameter—blur vari-
ance s2 [25,30]:

h(i, j; s) = K · exp
(

− i2 + j2

2s2

)

(18)

– jinc function, with an unknown scaling factor s [6]:

h(i, j; s) = K ·
[

2J1(r/s)

r/s

]2

(19)

where J1(·) is first-order Bessel function of first kind,
the radius r = √

i2 + j2. The constant K in (18) and
(19) is a normalization factor, s.t.

∑

i, j h(i, j) = 1.

The Gaussian function is often used to model or approxi-
mate many blur kernels [25,30]. The jinc function describes
the typical imaging pattern by optical diffraction,which often
appears in optical apparatus, e.g., microscope and telescope
[6]. The blur size s in (18) and (19) (which controls the blur-
ring degree) is the unknown PSF parameter to be estimated.

Now,we perform the following synthetic experiments: the
test images shown in Fig. 4 are blurred by Gaussian kernel
(18) or jinc function (19) with the true value s0 = 2.0, and
corrupted by white Gaussian noise with various variances
corresponding to blur signal-to-noise ratio (BSNR) of 40,
30, 20, 10dB, which is defined as (in dB) [25]:

BSNR = 10 × log10

(‖H0x0 − mean(H0x0)‖22
Nσ 2

)
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tentative s = 1.0 tentative s = 2.0 tentative s = 3.0
(1) convergence of FISTA

20 40 60 80 100 120
50000

60000

70000

80000

90000

100000

iteration number

 objective value

1E-3

0.01

0.1

1

 error of obj. value

10 20 30 40
100000

200000

300000

400000

500000

iteration number

 objective value

1E-3

0.01

0.1

1

 error of obj. value

10 20 30 40 50 60 70 80 90 100 110 120

250000

500000

750000

1000000

1250000

1500000

iteration number

 objective value

1E-3

0.01

0.1

1

 error of obj. value

(2) evolution of p-SURE

20 40 60 80 100 120
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

iteration number

 p-MSE
 p-SURE

10 20 30 40

2

4

6

8

10

iteration number

 p-MSE
 p-SURE

20 40 60 80 100 120
0

10

20

30

40

iteration number

 p-MSE
 p-SURE

Fig. 5 Example: Cameraman, Gaussian with s0 = 2.0, BSNR = 30
dB, fixed λ = 0.01

4.2 The convergence of FISTA for fixed � and
tentative s

First, we need to verify the proposed recursive evaluation of
p-SURE for the �1-penalized estimate (shown in Fig. 2). For
any tentative Hs and fixed λ, FISTA attempts to minimize

L(c(i)) = 1

2

∥

∥HsRc(i) − y
∥

∥

2
2 + λ

∥

∥c(i)
∥

∥

1

We terminate the iteration by the stopping criterion e(i) =
|L(c(i+1)−c(i))|

L(c(i))
≤ 10−3.

Figures 5 and 6 show the convergence of FISTA for ten-
tative Hs and fixed λ, and the variation of p-SURE during
the iterations. The meaning of the vertical axis is given by
the legend on the corner of each sub-figure. We can see that:
(1) the objective value L(c(i)) keeps decreasing until con-
vergence; (2) p-SURE is always very close to the p-MSE
during the iterations, which demonstrates that the p-SURE is
a reliable estimate of p-MSE.

We also observe that in the left-down sub-figures of Figs. 5
and 6, the p-MSE (and the p-SURE) starts to increase after a
few iterations. It is mainly because the FISTA aims at mini-
mizing the objective functional (11), rather than the predicted
error w.r.t. the true image x0. Hence, the objective value
L(c(i)) is monotonically decreasing (shown in top-left sub-
figures); however, it is not guaranteed for the predicted error.
That is to say, the FISTA only seeks the minimizer of the
given functional, not a minimizer of the predicted error.3

3 This similar phenomenon is also frequently encountered in non-blind
sparse deconvolution (where H is exactly known), especially when the
regularization parameter λ is very small. Refer to Fig. 2-(1) of [26],
Fig. 2-(2) of [29] and Fig. 2-(2) of [28] for the typical examples with �1
or total variation as regularizer, we can also see that the predicted error
increases after a few iterations, since the iterative algorithm used aims
at minimizing a given functional, not the predicted or reconstructed
error. That is also why there is generally no need to set a very strict
stopping criterion for convergence in practice, since the exact solution
at the convergence usually does not have the good restoration quality,
especially when λ is small [3,18].

tentative s = 1.0 tentative s = 2.0 tentative s = 3.0
(1) convergence of FISTA
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Fig. 6 Example: Coco, jinc with s0 = 2.0, BSNR = 20dB, fixed λ =
0.1
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Fig. 7 Three examples for PSF estimation by p-SURE minimization
with �1-estimate (the true s0 = 2.0)

4.3 PSF estimation by p-SUREminimization with
�1-estimate

The proposed method of Fig. 2 has been verified and can be
safely incorporated into the PSF estimation of Fig. 3. Figure 7
shows three cases of p-SUREminimizationwith �1-estimate.
We can see that: (1) the proposedmethod yields very accurate
PSF estimate; (2) p-SURE is always very close to p-MSE for
any cases.

Now, we are going to compare this method to our previous
work [25]—the p-SUREminimization withWiener filtering.
It should be noted that there is no need to present the results of
other PSF estimation methods, including GCV [20], kurtosis
[12], DL1C [9] and APEX [7], since the extensive tests have
shown that they are inferior to our previous work [25] in
terms of estimation accuracy.

Table 1 reports the PSF estimation results and presents
the comparisons under various images and noise levels. The
proposed approach is denoted by ‘�1-est.’, whereas the pre-
vious work of [25] is denoted by ‘Wiener’. We can see that
the estimated parameters by the �1-estimate are very close to
the true values s0, and outperforms the previous work using
Wiener filtering [25] in average.

After the PSF estimation, we apply the SURE-LET
algorithm to performnon-blind deconvolution, using the esti-
mated PSF [27]. Figure 8 shows four visual examples, which
demonstrate the negligible PSNR loss of the blind restora-
tion, compared to exact deconvolution.
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Table 1 The estimated
parameters s of Gaussian and
jinc (s0 = 2.0)

Blur kernel Gaussian with s0 = 2.0 jinc with s0 = 2.0
BSNR (in dB) 40 30 20 10 40 30 20 10

C–man
Wiener
�1-est .

2.06
2.03

1.96
1.97

1.97
1.98

2.09
2.04

1.97
1.97

2.01
1.99

2.06
2.02

2.06
2.02

House
Wiener
�1-est .

2.21
2.03

2.11
2.04

2.24
2.03

2.43
2.06

2.01
2.01

2.06
2.02

2.14
2.04

2.09
2.06

Coco
Wiener
�1-est .

2.14
2.04

2.12
2.05

2.17
2.03

2.32
2.08

2.01
2.01

2.05
2.04

2.09
2.04

2.22
2.08

Mandrill
Wiener
�1-est .

1.97
2.02

1.94
2.01

1.93
1.97

1.86
1.90

1.99
1.99

1.99
2.00

1.97
2.01

1.93
2.03

observed images

blind restorations

exact restorations

22.43dB 26.10dB 22.26dB 21.09dB

25.88dB 31.09dB 27.76dB 23.60dB

25.90dB 31.12dB 27.76dB 23.60dB

Fig. 8 Visual examples of blind deconvolution: (1)Cameraman,Gaus-
sian, BSNR = 30 dB; (2) Coco, jinc, BSNR = 20 dB; (3) House, jinc,
BSNR = 10 dB; (4) Mandrill, Gaussian, BSNR = 40 dB

4.4 Application to real image

In the last set of experiments, we apply the proposed method
to real images: Text and Fruit, shown in Figs. 9 and 10. They
were captured by a digital camera, blurred due to out-of-
focus. There are no exact expressions of the PSF. We assume
the underlying (unknown) PSF as Gaussian for Text and
jinc function for Fruit, estimate the blur size s, and perform
SURE-LET deconvolution using the estimated PSF [27].

Figures 9 and 10 show the variations of p-SURE with
the blur size s, using �1-estimate and Wiener filtering [25],
respectively.4 We can see that the p-SURE with Wiener fil-
tering [25] tends to produce larger blur size s than using
�1-estimate. Thus, the restored images by [25] exhibit more
ringing effect in the homogeneous regions and edges due
to the over-deconvolution (see the smooth regions in Fruit,
the background of Text, edges around the black characters in

4 We cannot compute p-MSE, since the original image x0 and true PSF
H0 are unknown in the real experiments.

observed Text p-SURE min.

restored using 1-estimate restored using Wiener filter

p-
S

U
R

E

0.00783

0.00784

0.00785

0.00786

0.00787

0.00788

0.00789

0.0079

0.00791

0.0085

0.0086

0.0087

0.0088

0.0089

blur size of Gaussian kernel
8 8.2 8.4 8.6 8.8

L1-estimate
Wiener filter

est. s = 8.34 by 1-estimate
est. s = 8.70 by Wiener

Fig. 9 Restoration ofText by the proposedmethod: the estimatedGaus-
sian blur size is 8.34 by �1-based estimate and 8.70 by Wiener filtering
[25]

Text). As a comparison, the restored images by �1-estimate
have better visual quality.

Notice that for fair comparison, both methods use the
same SURE-LET deconvolution [27]: they only differ in the
estimated PSF. Therefore, it is easy to recognize that the
improvement in the restoration performance is mainly due
to the more accurate PSF estimation, though the true PSF is
unknown.

5 Conclusions

In this paper, we incorporated the �1-penalized sparse decon-
volution into p-SURE, which has been demonstrated to yield
more accurate PSF estimate, compared to using Wiener-
type filter [25]. The Jacobian recursion and MC simulation
developed in this paper can be, in principle, extended to
other regularizers and iterative algorithms for the SURE
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observed Fruit p-SURE min.

restored using 1-estimate restored using Wiener filter

p-
S

U
R

E

0.0024

0.0025

0.0026

0.0027

0.0028

0.0029

0.003

0.0031

blur size of jinc kernel
2.9 3 3.1 3.2 3.3 3.4 3.5 3.6

L1-estimate
Wiener filter

est. s = 3.24 by 1-estimate
est. s = 3.49 by Wiener

Fig. 10 Restoration ofFruit by the proposedmethod: the estimated jinc
blur size is 3.24 by �1-based estimate and 3.49 Wiener filtering [25]

evaluation. There is also a huge potential to develop spe-
cific algorithms for various applications, e.g., fluorescence
microscopy [13], based on this criterion consisting of sparse
estimate.
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