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Abstract
Recently, total variation regularization has become a standard technique, and even a basic tool for image denoising and
deconvolution. Generally, the recovery quality strongly depends on the regularization parameter. In this work, we develop a
recursive evaluation of Stein’s unbiased risk estimate (SURE) for the parameter selection, based on specific reconstruction
algorithms. It enables us to monitor the evolution of mean squared error (MSE) during the iterations. In particular, to deal
with large-scale data, we propose a Monte Carlo simulation for the practical computation of SURE, which is free of any
explicit matrix operation. Experimental results show that the proposed recursive SURE could lead to highly accurate estimate
of regularization parameter and nearly optimal restoration performance in terms of MSE.

Keywords Total variation · Denoising · Deconvolution · Stein’s unbiased risk estimate (SURE) · Jacobian recursion

1 Introduction

Problem statement—Consider the standard image recovery
problem: find a good estimate of original image x0 ∈ R

N

from the following degradation model [15,20,22]:

y = Hx0 + ε (1)

where y ∈ R
N is the observed image, H ∈ R

N×N denotes
the observation matrix, which represents either identity for
denoising or convolution for deconvolution, and ε ∈ R

N is an
additive white Gaussian noise with known variance σ 2 > 0.

Since the seminal work of ROF [12], total variation (TV)
regularization has become a standard technique [17,19]:

x̂λ = argmin
x

1

2

∥

∥Hx − y
∥

∥

2
2 + λ · TV(x)

︸ ︷︷ ︸

L(x)

(2)

Here, λ is a regularization parameter, which is essential for
the recovery quality of x̂λ. The isotropic TV term is defined
as [9]:
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TV(x) =
N
∑

n=1

√

∣

∣(D1x)n
∣

∣

2 + ∣

∣(D2x)n
∣

∣

2 + α (3)

whereD1 andD2 denote the horizontal and vertical first-order
differences, respectively. The parameter α = 0 corresponds
to the standard TV definition. We use the smooth approx-
imation with small α > 0, since it simplifies numerical
computations due to the differentiability [9].

TV is particularly effective for recovering those signals
with piecewise constant region while preserving edges [12].
Recently, people extended the basic TV-norm to more gen-
eral form of ϕ(‖Dx‖2) that models a priori of the first-order
gradients of an image [13]. Here, ϕ is a potential, possibly
non-convex, function. It is reduced to the standard TV-norm
when ϕ(t) = t . In this work, we focus on the TV mini-
mization and attempt to find a proper value of λ for a good
restoration quality. This work may help to gain some insights
into more complicated function of ϕ.

Related works—There have been a number of criteria for this
selection of λ, for example:

– Generalized cross-validation [5]: It is often used for linear
estimates, not applicable for the nonlinear reconstruction
considered here.

– L-curve method [7]: This procedure is not fully auto-
mated and often requires hand tuning or selection.
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– Discrepancy principle [8]: This criterion is easy to com-
pute and howevermay cause a loss of restoration quality.1

In this paper, we quantify the restoration performance by
the mean squared error (MSE) [1,22]:

MSE = 1

N
E

{

∥

∥x̂λ − x0
∥

∥

2
2

}

(4)

and attempt to select a value of λ, such that the corresponding
solution x̂λ achieves minimum MSE.

Notice that the MSE is inaccessible due to the unknown
x0. In practice, Stein’s unbiased risk estimate (SURE) has
been proposed as a statistical substitute for MSE [1,16]:

SURE = 1

N

(

∥

∥x̂λ

∥

∥

2
2 − 2yTH−Tx̂λ + 2σ 2Tr

(

H−TJy (̂xλ)
)

)

+ 1

N

∥

∥x0
∥

∥

2
2 (5)

since it depends on the observeddatay only.2 Tr in (5) denotes
the matrix trace. Here, Jy (̂xλ) ∈ R

N×N is a Jacobian matrix
defined as [21,23]:

[

Jy (̂xλ)
]

m,n = ∂(̂xλ)m

∂ yn

The statistical unbiasedness of SURE w.r.t. true MSE has
been proved in [22]. Recently, SURE has become a popular
criterion for parameter selection, in the context of nonlinear
denoising/deconvolution [1,22], and �1-based sparse recov-
ery [18,23]. However, to our best knowledge, there are very
few researches on the application of SURE to TV-based
reconstruction, which is the purpose of this paper.

Our contributions—Our main contributions are twofold.
First, we develop a recursive evaluation of SURE during the
reconstruction iterations, which finally provides a reliable
estimate of the MSE for the TV-based recovery. Second, the
Monte Carlo (MC) simulation is used to facilitate the SURE
computation for large-scale data, without explicit matrix
operation.

Additional remarks—Throughout this paper, we use bold-
face lowercase letters, e.g. x ∈ R

N , to denote N -dimensional
real vectors, where N is typically the number of pixels in an
image. The matrices are denoted by boldface uppercase let-
ters, e.g. A ∈ R

M×N . AT ∈ R
N×M denotes the transpose of

matrix A. The superscripts (i) and ( j) denote the iterative
indices of outer or inner loops. The notation diag(v) trans-
forms the vector v to the diagonal matrix V with Vn,n = vn .

1 See Sect. 4 for the complete comparisons between discrepancy prin-
ciple and the proposed SURE.
2 Note that the last constant term—‖x0‖22/N—is irrelevant to the opti-
mization of x̂λ.

2 Recursive evaluation of SURE for TV
denoising

Now, we consider image denoising problem, i.e. H = I in
(2). To perform the SURE-based selection of λ, we need to
compute the solution x̂λ and its SURE.

2.1 Basic scheme of Chambolle’s algorithm [2]

Many algorithms can be used to find the TV solution x̂λ, e.g.
[3,4,6,11,14]. Here, we apply a dual-based iterative projec-
tion algorithm—Chambolle’s algorithm—to solve (2), since
it is one of the most popular TV minimization solvers and
has been extensively used in the recent decade. The original
form of the Chambolle’s iteration was described in [2]. Now,
we rewrite the algorithm in matrix language:

u(i+1) = V
(i)

⎛

⎜

⎜

⎝

w(i)

︷ ︸︸ ︷

u(i) − τ

λ
D (y + λDTu(i))
︸ ︷︷ ︸

x(i)

⎞

⎟

⎟

⎠

(6)

where τ is a step size and the gradient operator D is D =
[DT

1 ,DT
2 ]T ∈ R

2N×N [D1 and D2 are the same as in (3)].
The vector u(i) ∈ R

2N lives inD-domain of an image, which
can be transformed back to the image domain by DTu. The

diagonal matrix V
(i)

is:

V
(i) =

[

V(i) 0
0 V(i)

]

∈ R
2N×2N

where the diagonal block V(i) ∈ R
N×N is given by:

V(i)
n,n =

(

1 + τ

λ

√

(

(D1x(i))n
)2 + (

(D2x(i))n
)2 + α

)−1

2.2 Recursive evaluation of SURE

The next question is how to compute the SURE of the TV-
denoised image x̂λ? We propose to compute the SURE of
x(i) during each iteration until final convergence. The similar
treatment has been used in [18,21,23] for �1-based sparse
deconvolution.

The SURE for the i th update is (notingH = I for denois-
ing problem):

SURE = 1

N

∥

∥x(i) − y
∥

∥

2
2 + 2σ 2

N
Tr

(

Jy(x(i))
)

− σ 2 (7)

The Jacobian matrix Jy(x(i)) can be evaluated by the basic
calculus as follows.
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First, we split (6) into two parts—vertical and horizontal
differences:

[

u(i+1)
1

u(i+1)
2

]

︸ ︷︷ ︸

u(i+1)

=
[

V(i) 0
0 V(i)

]

︸ ︷︷ ︸

V
(i)

[

w(i)
1

w(i)
2

]

︸ ︷︷ ︸

w(i)

From (6), the Jacobian matrix of u(i+1)
1 is:

[

Jy(u
(i+1)
1 )

]

m,n
=

(

w(i)
1

)

m

∂V(i)
m,m

∂ yn
+ V(i)

m,m
∂(w(i)

1 )m

∂ yn

Let a = D1x(i) and b = D2x(i), we have:

∂V(i)
m,m

∂ yn
= ∂V(i)

m,m

∂am
· ∂am

∂ yn
+ ∂V(i)

m,m

∂bm
· ∂bm

∂ yn

= −τ

λ
· am(V(i)

m,m)2
√

a2
m + b2m + α

︸ ︷︷ ︸

(C(i)
1 )m,m

·∂am

∂ yn

−τ

λ
· bm(V(i)

m,m)2
√

a2
m + b2m + α

︸ ︷︷ ︸

(C(i)
2 )m,m

·∂bm

∂ yn

= −τ

λ

[

C(i)
1 D1Jy(x(i)) − C(i)

2 D2Jy(x(i))
]

m,n

Thus, we obtain:

Jy
(

u(i+1)
1

)

= −τ

λ
W(i)

1

(

C(i)
1 D1 + C(i)

2 D2

)

Jy(x(i))

+V(i)Jy(w
(i)
1 ) (8)

where diagonal matrix W(i)
1 = diag(w(i)

1 ).

Similarly, Jy(u
(i+1)
2 ) is given by:

Jy
(

u(i+1)
2

)

= −τ

λ
W(i)

2

(

C(i)
1 D1 + C(i)

2 D2

)

Jy(x(i))

+V(i)Jy
(

w(i)
2

)

(9)

By the basic property of Jacobian matrix [23], we further
have Jy(w

(i)
s ) = Jy(u

(i)
s ) − τ

λ
DsJy(x(i)) for s = 1, 2. Sub-

stituting Jy(w(i)) into Jy(u(i)) yields (after rearrangements):

Jy(u(i+1)) =
⎡

⎣

Jy
(

u(i+1)
1

)

Jy
(

u(i+1)
2

)

⎤

⎦ =
[

V(i) 0
0 V(i)

]

Jy(u(i)) − τ

λ
·

[

W(i)
1 C(i)

1 + V(i) W(i)
1 C(i)

2

W(i)
2 C(i)

1 W(i)
2 C(i)

2 + V(i)

]

DJy(x(i))

(10)

Noting that x(i) = y + λDTu(i) in (6), we have:

Jy(x(i)) = I + λDT
1Jy

(

u(i)
1

)

+ λDT
2Jy

(

u(i)
2

)

(11)

Thus, the Jacobian matrix Jy(x(i)) can be evaluated in this
recursive manner, until the convergence of Chambolle’s iter-
ation, summarized in Algorithm 1.

Algorithm 1: SURE evaluation for Chambolle’s denois-
ing algorithm

Input: y, λ, α, τ , initial u(0)

Output: reconstructed x̂λ and SURE(̂xλ)

for i = 1, 2, . . . (Chambolle’s iteration) do
1 compute x(i) by (6);
2 update Jy(x(i)) by (10) and (11);
3 compute SURE of i th iterate by (7);

end

This algorithm enables us to solve the TV denoising prob-
lemwith a prescribed value of λ and simultaneously evaluate
the SURE during the Chambolle’s iterations.

2.3 Monte Carlo for practical computation

From (10)–(11), we can see that the Jacobian recursions
require the explicit matrix computations. However, for a typ-
ical image of size 256× 256, the related matrices, e.g.W(i)

s ,
C(i)

s , V(i) and Ds (s = 1, 2), are of size 2562 × 2562. Due to
the limited computational resources (e.g. RAM), it is imprac-
tical to explicitly store and compute such the huge matrices.
Thus, the Jacobian recursions cannot be computed in the
explicit matrix form of (10)–(11).

However, Monte Carlo simulation provides an alternative
way to compute the trace by the following fact [1]:

Tr
(

Jy(x(i))
)

= E

{

nT0 Jy(x
(i))n0

︸ ︷︷ ︸

n(i)
x

}

(12)

with input white Gaussian noise n0 ∼ N (0, IN ), provided
that n(i)

x can be computed without explicit form of Jy(x(i)).
Multiplying the input n0 on both sides of (10)–(11), we

obtain:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

n(i+1)
u1

︷ ︸︸ ︷

Jy
(

u(i+1)
1

)

n0 = V(i)

n(i)
u1

︷ ︸︸ ︷

Jy
(

u(i)
1

)

n0 − τ
λ
P(i)
1

n(i)
x

︷ ︸︸ ︷

Jy(x(i))n0

Jy
(

u(i+1)
2

)

n0
︸ ︷︷ ︸

n(i+1)
u2

= V(i) Jy
(

u(i)
2

)

n0
︸ ︷︷ ︸

n(i)
u2

− τ
λ
P(i)
2 Jy(x(i))n0

︸ ︷︷ ︸

n(i)
x

(13)
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and

Jy(x(i))n0
︸ ︷︷ ︸

n(i)
x

= n0 + λDT
1 Jy

(

u(i)
1

)

n0
︸ ︷︷ ︸

n(i)
u1

+λDT
2 Jy

(

u(i)
2

)

n0
︸ ︷︷ ︸

n(i)
u2

(14)

where P(i)
1 = (W(i)

1 C(i)
1 + V(i))D1 + W(i)

1 C(i)
2 D2 and P(i)

2

= W(i)
2 C(i)

1 D1 + (W(i)
2 C(i)

2 + V(i))D2.
By MC simulation, the Jacobian recursions of (10)–(11)

boil down to a simple noise evolution (13)–(14). We further
have three remarks to facilitate the SURE-MC computations.

– D1n0,D2n0,DT
1n0 andD

T
2n0 can be computed by simple

first-order differences.
– The diagonal matrix–vector multiplicationsW(i)

s n0,C
(i)
s

n0 (s = 1, 2) and V(i)n0 are essentially simple compo-
nentwise products: there is no need to explicitly write out
the full diagonal matrices.

– For simplicity, we initialize u(0) = 0, and hence x(0) =
y. Thus, Jy(u(0)) = 0 and Jy(x(0)) = I, which yields

n(0)
u = 0 and n(0)

x = n0.

Thus, all the computations of (13)–(14) can be efficiently
performedbyelement-wise operations (e.g. scalar difference,
multiplication, etc). We are able to evaluate the SURE with-
out any explicit matrix computation, summarized as follows.

Algorithm 2: Monte Carlo counterpart of Algorithm 1

for i = 1, 2, ... (Chambolle’s iteration) do
1 compute x(i) by (6);
2 compute n(i)

u1 , n
(i)
u2 and n(i)

x by (13) and (14);
3 compute the trace of Jy(x(i)) by (12);
4 compute SURE of i th iterate by (7);

end

To find the optimal value of λ, we repeatedly implement
Algorithm 2 for various tentative values of λ, and then, the
minimum SURE indicates the optimal λ. This global search
has been frequently used in [18,23].

3 Recursive evaluation of SURE for TV
deconvolution

Following the similar procedure with Sect. 2, we now con-
sider the TV deconvolution problem, where the SURE also
requires to compute the solution x̂λ and its SURE.

3.1 Basic scheme of ADMM

To find x̂λ, we choose a typical alternating direction method
of multipliers (ADMM) for TV deconvolution [i.e. H being

convolution in (1)] [17,19]. By the variable splitting [17,19],
(2) is equivalent to the following problem:

min
x

1

2

∥

∥Hx − y
∥

∥

2
2 + λ · TV(z), s.t. z = x

which, by Lagrangian, becomes:

min
x,z

1

2

∥

∥Hx − y
∥

∥

2
2 + λ · TV(z) + μ

2

∥

∥z − x
∥

∥

2
2

whereμ is an augmented Lagrangian penalty parameter. The
ADMM alternatively minimizes this functional w.r.t. both
variables x and z (iterate on i):

{

x(i) = argminx 1
2

∥

∥Hx − y
∥

∥

2
2 + μ

2

∥

∥x − z(i)
∥

∥

2
2

z(i+1) = argminz
μ
2

∥

∥z − x(i)
∥

∥

2
2 + λ · TV(z)

i.e.

{

x(i) = (

HTH + μI
)−1(HTy + μz(i)

)

z(i+1) = argminz 1
2

∥

∥z − x(i)
∥

∥

2
2 + λ

μ
· TV(z)

(15)

We found that the update of z(i) is essentially a TV denois-
ing problem: estimate a ‘denoised’ version of a ‘noisy’ image
x(i). It can be efficiently obtained by Chambolle’s algorithm
[2] (with the index j , for the fixed i)3:

u(i, j+1) = V
(i, j)

⎛

⎜

⎜

⎜

⎝

w(i, j)

︷ ︸︸ ︷

u(i, j) − τμ

λ
D
(

x(i) + λ

μ
DTu(i, j)

)

︸ ︷︷ ︸

z(i, j)

⎞

⎟

⎟

⎟

⎠

(16)

where diagonal block V(i, j) is given by:

V(i, j)
n,n =

(

1 + τμ

λ

√

(

(D1z(i, j))n
)2 + (

(D2z(i, j))n
)2 + α

)−1

When the Chambolle’s iteration (inner iterate on j)
reaches the final convergence, z(i+1) is updated as z(i+1) =
z(i,∞).

3.2 Jacobian recursion of ADMM

For the deconvolution problem, the SURE needs to compute
H−1 in (5).However, it is observed that for the ill-conditioned
matrix H, the simple inversion H−1 may cause numerical

3 We can see that the Chambolle’s iteration is readily incorporated into
ADMM, see Sect. 2.1 for details.
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instability of SURE [22]. Hence, we use the regularized
inverse H−1

β to replace H−1:

H−1
β = (HTH + βI)−1HT

with a parameter β. The regularized SURE becomes:

SURE = 1

N

(

∥

∥x(i)
∥

∥

2
2 − 2yTH−T

β x(i) + 2σ 2Tr
(

H−T
β Jy(x(i))

)

)

+ 1

N

∥

∥x0
∥

∥

2
2 (17)

Refer to [18,22] for the similar treatment.
By the similar derivations with Sect. 2.2, we obtain the

Jacobian recursions for ADMM as:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Jy(x(i)) = (HTH + μI)−1
(

HT + μJy(z(i))
)

Jy(u
(i, j+1)
1 ) = V(i, j)Jy(u

(i, j)
1 ) − τ

λ
P(i, j)
1 Jy(z(i, j))

Jy(u
(i, j+1)
2 ) = V(i, j)Jy(u

(i, j)
2 ) − τ

λ
P(i, j)
2 Jy(z(i, j))

Jy(z(i, j)) = Jy(x(i)) + λ
μ
DTJy(u(i, j))

(18)

where P(i, j)
1 = (W(i, j)

1 C(i, j)
1 + V(i, j))D1 + W(i, j)

1 C(i, j)
2 D2

and P(i, j)
2 = W(i, j)

2 C(i, j)
1 D1 + (W(i, j)

2 C(i, j)
2 + V(i, j))D2.

Here, W(i, j)
1 , W(i, j)

2 , C(i, j)
1 and C(i, j)

2 are defined similarly
with Sect. 2.2.

3.3 Monte Carlo for SURE evaluation

Similar to Sect. 2.3, we adopt Monte Carlo to evaluate the
trace term of SURE as:

Tr
(

H−T
β Jy(x(i))

) = E

⎧

⎪

⎪

⎨

⎪

⎪

⎩

nT0H
−T
β Jy(x(i))n0

︸ ︷︷ ︸

n(i)
x

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(19)

with input white Gaussian noise n0 ∼ N (0, IN ). Then,
multiplying n0 on both sides of (18), we obtain the noise
evolution during ADMM:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

n(i)
x = B−1HTn0 + μB−1n(i)

z

n(i, j+1)
u1 = V(i, j)n(i, j)

u1 − τ
λ
P(i, j)
1 n(i, j)

z

n(i, j+1)
u2 = V(i, j)n(i, j)

u2 − τ
λ
P(i, j)
2 n(i, j)

z

n(i, j)
z = n(i, j)

x + λ
μ
DT
1n

(i, j)
u1 + λ

μ
DT
2n

(i, j)
u2

(20)

where B = HTH + μI, n(i)
x = Jy(x(i))n0 and other noises

are similarly defined as n(i)
x .

The flowchart of the algorithm is shown in Fig. 1. Besides
from the three remarks mentioned in Sect. 2.3, we notice that
B−1, HT and H−1

β can be computed by Fourier transform.
Thus, all computations of (20) can be performed without
any explicit matrix computations.

input given y and H
initial z(0)

update x(i)

by (15)

update n(i)
x

by (20)

compute z(i)

by (16)

compute n(i)
z

by (20)

Chambolle

compute SURE
by (19), (17)

ADMM iteration by i := i + 1
ADMM

output xλ and SURE

Fig. 1 SURE-MC evaluation for ADMM (Chambolle’s algorithm is
for obtaining z(i))

4 Experimental results and discussion

4.1 Experimental setting

The test dataset contains four 8-bit images of size 256× 256
or 512 × 512 displayed in Fig. 2, covering a wide range of
natural images.

For both denoising and deconvolution, we always termi-
nate the iterative algorithms, when the relative error of the
objective value L(x(i)) in (2) is below 10−5.

The restoration performance is measured by the peak
signal-to-noise ratio (PSNR), defined as (in dB) [20,22]:

PSNR = 10 × log10

(

2552

‖̂x − x0‖22/N

)

We choose α = 10−12 in the TV definition of (3) and set
the parameter τ = 1/4 in (6), as suggested in [2].

4.2 Image denoising

4.2.1 SURE evaluation for Chambolle’s algorithm

First, we need to verify the accuracy of SURE w.r.t. MSE for
the Chambolle’s iteration. Figure 3 shows the convergence
of Chambolle and evolution of SURE, under the noise levels
of σ 2 = 1, 10 and 100, respectively. We can see that: (1)

Fig. 2 Original test images: a Cameraman 256× 256; b Coco 256×
256; c House 256 × 256; d Bridge 512 × 512
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(1) Cameraman, σ2 = 1 (2) House, σ2 = 10 (3) Bridge, σ2 = 100
objective value of L(x(i)) — converegence of Chambolle’s iteration
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Fig. 3 The convergence of Chambolle and evolution of SURE for fixed
λ: (1) λ = 0.1; (2) λ = 1; (3) λ = 10

(1) Cameraman, σ2 House, σ2= 1 (2) = 10 (3) Bridge, σ2 = 100
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Fig. 4 The global optimization of λ for TV denoising by Chambolle’s
algorithm

(1) Cameraman, σ2 = 100 (2) House, σ2 = 10 (3) Bridge, σ2 = 1000
objective value of L(x(i)) — converegence of Chambolle’s iteration
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Fig. 5 The convergence of Chambolle with the parameter update by
discrepancy principle

the objective value keeps decreasing until convergence; (2)
SURE is always close to MSE during the iterations.

noisy images
PSNR=28.13dB PSNR=28.13dB PSNR=18.13dB PSNR=18.13dB

denoised images by SURE
PSNR=32.72dB PSNR=36.19dB PSNR=29.20dB PSNR=24.76dB

Fig. 6 Examples of visual comparisons: (1) Cameraman, σ 2 = 100;
(2) Coco, σ 2 = 100; (3) House, σ 2 = 1000; (4) Bridge, σ 2 = 1000

We repeatedly implement the algorithm for various val-
ues of λ and obtain Fig. 4, where the optimal λ is easy to
recognize.

4.2.2 Comparisons with discrepancy principle

Discrepancy principle (DP) believes that a good value of λ

should satisfy the discrepancy condition
∥

∥y− x̂λ

∥

∥

2
2 = Nσ 2,

according to the observation model (1) [8]. The original
Chambolle’s algorithm applied DP to update the parameter
λ during iterations as [2]:

λ(i+1) =
√

Nσ 2

‖y − x(i)‖22
λ(i)

which finally satisfies the discrepancy condition when con-
verged. Figure 5 shows a few examples of the parameter
update by DP.

Table 1 shows the complete comparisons between the pro-
posed SURE-basedmethod and discrepancy principle. Here,
‘DP’ denotes discrepancy principle. The format of this table
is est. λ

PSNR , where the upper value is the selected value of λ by
DP/SURE/MSE and the lower one is its resultant denoising
PSNR (in dB) using the corresponding λ. The symbol ‘–’

Table 1 The complete
comparisons of selected value of
λ and denoising PSNR between
DP and SURE

σ 2 1 10 100 1000 1 10 100 1000

Image Cameraman House

DP [2] 0.64
46.97

2.32
39.11

8.37
32.05

31.21
26.23

0.67
47.01

2.42
39.54

9.97
33.89 –

SURE 0.21
48.72

1.15
40.22

5.70
32.74

23.36
26.61

0.19
48.74

1.26
40.50

6.87
34.35

29.76
29.20

MSE 0.21
48.72

1.26
40.23

5.70
32.74

23.36
26.61

0.21
48.75

1.39
40.50

6.87
34.35

29.76
29.20

Image Coco Bridge

DP [2] 0.73
47.71

3.25
41.25

13.78
35.15 – 0.64

45.83
2.19
36.95

7.83
29.52

29.55
24.27

SURE 0.28
49.13

2.02
42.02

7.54
36.19

29.76
30.62

0.11
48.25

0.72
38.76

4.29
30.60

20.34
24.76

MSE 0.28
49.13

1.84
42.04

8.29
36.21

29.76
30.62

0.10
48.25

0.72
38.76

4.29
30.60

20.23
24.76
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(1) Cameraman (2) Coco (3) Bridge
Rational, BSNR=40dB Uniform, BSNR=30dB Gaussian, BSNR=10dB
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Fig. 7 The convergence of ADMM and evolution of SURE for fixed λ:
(1) λ = 0.1, (2) λ = 1, (3) λ = 10
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Fig. 8 The global optimization of λ for TV deconvolution by ADMM
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Fig. 9 The parameter update for TV deconvolution by DP [10]

indicates that the method fails to find an optimal λ for this
case. The MSE is not accessible in practice and thus shown
in italics. It is the comparison benchmark, indicating the best
PSNR performance we can achieve. We can see that com-
pared to the MSE minimization, the PSNR by DP is worse
than optimal PSNR by 1dB in average, whereas the SURE
minimization yields negligible PSNR loss (within 0.02dB).
Figure 6 shows a number of visual examples.

4.3 Image deconvolution

4.3.1 Experimental setting

For deconvolution problem, we consider the following
benchmark convolution kernels commonly used in [10,22]:

– Rational filter h(i, j) = C · (1 + i2 + j2)−1 for
i, j = −7, . . . , 7;

– Separable filter 5 × 5 filter with weights [1, 4, 6, 4, 1]
/16 along both horizontal and vertical directions;

– 9 × 9 uniform blur;
– Gaussian kernel h(i, j) = C · exp ( − i2+ j2

2s2
)

with
s = 2.0.

where C is a normalization factor, s.t.
∑

i, j h(i, j) = 1.0.
The blurred images are subsequently contaminated by i.i.d
Gaussian noise with various variance σ 2, corresponding to
blur signal-to-noise ratio (BSNR) being 40, 30, 20 and 10dB,
respectively, where the BSNR is defined as (in dB) [20]:

Table 2 The selected λ and
corresponding PSNR by DP and
SURE (rational and separable
filtering)

Blur kernel Rational filtering Separable filtering

BSNR (in dB) 40 30 20 10 40 30 20 10

Cameraman

DP [10] 0.05
31.35

0.20
27.84

0.54
24.64

0.18
19.81

0.12
30.55

0.51
28.81

4.90
26.85

2.15
23.69

SURE 0.01
32.75

0.05
28.26

0.28
24.99

3.59
22.58

0.01
31.44

0.10
29.44

0.60
27.10

3.60
24.31

MSE 0.02
32.81

0.06
28.31

0.36
25.05

4.64
22.59

0.02
31.49

0.10
29.44

0.77
27.13

3.60
24.31

Coco

DP [10] 0.21
38.59

0.48
35.76

1.64
31.62

4.83
28.80

0.96
40.37

1.42
38.03

3.70
33.36

6.82
31.78

SURE 0.04
39.92

0.08
36.13

0.77
32.50

5.99
28.73

0.02
41.30

0.10
38.58

0.61
34.98

7.74
32.06

MSE 0.03
39.95

0.11
36.35

0.60
32.55

3.59
28.89

0.04
41.35

0.12
38.70

0.72
35.23

7.74
32.06

House

DP [10] 0.08
35.83

0.29
33.39

1.03
29.81

2.77
27.03

0.36
36.33

0.75
34.47

2.57
32.43

4.74
29.01

SURE 0.02
37.05

0.11
33.79

0.60
30.64

3.59
27.00

0.01
37.55

0.07
35.42

1.29
32.91

12.92
29.80

MSE 0.02
37.14

0.08
33.81

0.60
30.64

2.78
27.03

0.01
37.56

0.10
35.55

1.29
32.91

11.57
30.00

Bridge

DP [10] 0.03
30.00

0.15
26.97

0.34
24.75

0.18
20.61

0.06
29.42

0.34
28.00

1.09
26.38

9.24
24.33

SURE 0.01
31.05

0.05
27.57

0.17
24.90

1.67
22.54

0.007
30.16

0.06
28.58

0.36
26.71

3.59
24.49

MSE 0.008
31.06

0.05
27.57

0.22
24.97

2.78
22.72

0.007
30.16

0.06
28.58

0.46
26.74

3.59
24.49
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Table 3 The selected λ and
corresponding PSNR by DP and
SURE (uniform and Gaussian
blurs)

Blur kernel 9 × 9 uniform Gaussian kernel

BSNR (in dB) 40 30 20 10 40 30 20 10

Cameraman

DP [10] 0.03
28.04

0.002
24.44

0.007
22.46

0.01
19.22

0.05
26.06

0.007
24.67

0.02
23.32

0.12
19.89

SURE 0.01
28.42

0.08
25.44

0.11
22.98

7.74
21.29

0.01
26.08

0.11
25.02

0.28
23.86

2.78
22.57

MSE 0.01
28.43

0.08
25.44

0.17
23.02

2.78
21.43

0.01
26.09

0.08
25.06

0.46
23.87

4.64
22.67

Coco

DP [10] 0.10
35.47

0.34
32.94

1.66
28.35

0.05
23.62

0.12
35.26

0.47
33.01

0.07
29.96

0.14
23.94

SURE 0.02
36.54

0.08
33.54

0.60
30.02

2.78
27.46

0.01
35.36

0.06
33.60

0.60
31.67

5.99
29.29

MSE 0.01
36.61

0.10
33.59

0.60
30.02

2.15
27.46

0.03
35.63

0.10
33.74

0.77
31.68

4.64
29.34

House

DP [10] 0.04
34.66

0.006
29.52

0.02
26.74

0.02
22.75

0.08
32.44

0.34
30.54

0.03
28.23

0.12
23.45

SURE 0.008
35.04

0.08
32.05

0.77
28.41

2.15
25.41

0.01
32.59

0.08
31.27

0.77
29.62

2.15
27.30

MSE 0.01
35.10

0.08
32.05

0.46
28.52

1.67
25.45

0.03
32.82

0.10
31.34

0.77
29.62

2.15
27.42

Bridge

DP [10] 0.02
26.80

0.32
25.07

0.007
22.99

0.01
20.01

0.03
25.66

0.008
24.85

0.02
23.70

0.13
19.36

SURE 0.006
27.25

0.03
25.25

0.17
23.40

1.29
21.76

0.002
25.99

0.02
25.09

0.17
24.03

1.67
22.70

MSE 0.005
27.26

0.03
25.25

0.13
23.42

1.67
21.80

0.002
25.99

0.01
25.10

0.17
24.03

2.78
22.81

observed images
PSNR=22.25dB PSNR=26.33dB PSNR=29.59dB PSNR=20.49dB

deconvolved images by DP
PSNR=31.35dB PSNR=32.94dB PSNR=32.43dB PSNR=19.36dB

deconvolved images by SURE
PSNR=32.75dB PSNR=33.54dB PSNR=32.91dB PSNR=22.70dB

Fig. 10 Examples of visual comparisons: (1) Cameraman, rational,
BSNR= 40dB; (2) Coco, uniform, BSNR= 30dB; (3) House, sepa-
rable, BSNR= 20dB; (4) Bridge, Gaussian, BSNR= 10dB

BSNR = 10 × log10

(∥

∥Hx0 − mean(Hx0)
∥

∥

2
2

Nσ 2

)

The deconvolution performance is also measured by PSNR.
In addition, we always choose the parameters μ = 0.1σ 2

and β = 10−5.

4.3.2 SURE evaluation for ADMM

First, we implement the procedure shown in Fig. 1, i.e. apply
ADMM to solve (2) with fixed λ, and evaluate the SURE.
Figure 7 shows the convergence of ADMMand the evolution
of SURE. Figure 8 shows the global optimization of λ.

4.3.3 Comparisons with discrepancy principle

Similar to [2], the DP has also been adopted to the deconvo-
lution problem, for example, the i-LET method updated the
parameter λ by the following rule:

λ(i+1) = Nσ 2

‖y − Hx(i)‖22
λ(i)

in �1-based sparse deconvolution [10]. We use this equation
to update λ in TV deconvolution and obtain Fig. 9.

Tables 2 and 3 show the comparisons between the pro-
posed SURE and DP. The format is the same as Table 1. We
can see that compared to the best PSNR results obtained by
MSE minimization, the PSNR by DP is worse than optimal
PSNR by 1–3dB in average, whereas the SURE minimiza-
tion yields negligible PSNR loss (at most 0.20dB). Figure 10
shows a number of visual examples, where we can see the
better visual quality by SURE than by DP.4

4 It is better to recognize the visual difference by zoom-in on larger
screen.
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5 Conclusions

In this paper, we presented a SURE-based method for
automatically tuning regularization parameter for TV-based
recovery. In particular, we proposed a recursive evaluation
and Monte Carlo simulation for the practical computation.
Numerical results showed the superior performance of SURE
to other criteria for parameter selection, e.g. discrepancy
principle.

This proposed method, in principle, can be extended
to more complicated (possibly non-convex) regularizers
[13,18,23]. Future work will also deal with the SURE-
based multiple parameter selection and faster optimization
of SURE, to accelerate the global search used here.
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